
Módulo 4 - Gerenciando seu código com maestria 1

4️⃣
Módulo 4 - Gerenciando seu código com
maestria

Fala, dev!

Neste módulo, vamos aprender a utilizar uma ferramenta essencial para um programador: o Git. Além disso, colocaremos
o nosso código no GitHub, a maior plataforma de repositório de códigos online. Vamos nessa?

O Surgimento do Git - A História por Trás
Imagine um cenário: você é um programador talentoso, trabalhando em um projeto de software incrível com outras
pessoas espalhadas pelo mundo. Todos vocês precisam colaborar, compartilhar código e manter o histórico das
mudanças. Até certo ponto, isso é fácil. Vocês enviam e-mails com arquivos anexos, mas logo se torna um pesadelo.
Arquivos perdidos, versões conflitantes, caixas de entrada lotadas.

Foi aí que Linus Torvalds, o criador do
sistema operacional Linux, teve uma ideia
brilhante. Ele desenvolveu o Git. O Git é
um sistema de controle de versão
distribuído. Isso significa que cada
programador em um projeto tem uma cópia
completa do histórico de todo o projeto, o
que é genial.

E por que o Git é importante para um programador?

1. Controle de Versão: O Git permite que você acompanhe todas as mudanças feitas em seu código ao longo do
tempo. Você pode ver quem fez o quê, quando e por quê. Isso é útil quando algo dá errado e você precisa voltar no
tempo para encontrar o erro.

2. Colaboração Simples: Com o Git, vários programadores podem trabalhar no mesmo projeto ao mesmo tempo. Você
pode fazer alterações em seu código e, em seguida, mesclá-las com as alterações de outra pessoa sem problemas.

Módulo 4 - Gerenciando seu código com maestria 2

Isso torna a colaboração mais fácil.

3. Armazenamento na Nuvem: Serviços como GitHub e GitLab oferecem espaço gratuito para hospedar seus projetos
Git na nuvem. Isso significa que você pode acessar seu código de qualquer lugar e compartilhá-lo facilmente com
outros programadores.

4. Ramificações (Branches): Com o Git, você pode criar ramificações para experimentar novos recursos ou corrigir
bugs sem afetar o código principal. Isso é ótimo para experimentação e desenvolvimento seguro.

5. Segurança: Como cada programador tem uma cópia completa do histórico do projeto, ele é mais resistente a perdas
de dados. Mesmo se um servidor quebrar, o histórico do projeto ainda estará seguro em muitos outros lugares.

O que é código aberto?
Código aberto é como uma receita de bolo que todo
mundo pode ver e usar. Imagine que você está fazendo
um bolo delicioso e, em vez de manter a receita em
segredo, você a coloca na internet para que qualquer
pessoa possa ver, usar e até mesmo melhorar.

Da mesma forma, o código aberto é como se os
programadores compartilhassem suas receitas de
software. Isso significa que outras pessoas podem dar
uma olhada, fazer melhorias e até mesmo criar novos
pratos a partir da mesma receita.

Essa ideia de compartilhar e colaborar faz com que o software fique cada vez melhor, porque muitas pessoas diferentes
podem contribuir com suas ideias e correções. Portanto, quando você ouve falar de um software de código aberto, pense
nele como uma receita de bolo que está disponível para todos, e todos podem ajudar a torná-lo mais saboroso! 😊🍰

GitHub: A rede social dos desenvolvedores

Você já ouviu falar do GitHub? Ele é como uma rede social para desenvolvedores de software, um lugar onde você não
só compartilha seu código, mas também colabora com outros desenvolvedores em projetos incríveis. Vale dizer que
existem outras plataformas além do GitHub, como o GitLab e o Bitbucket.

Agora, vamos explorar o que torna o GitHub tão especial e entender como ele difere do Git, a ferramenta que todos os
desenvolvedores adoram.

A Origem
O GitHub surgiu em 2008 como uma plataforma para compartilhar e colaborar em projetos de software. Imagine isso
como uma rede social, mas para programadores. Seu fundador, Tom Preston-Werner, queria tornar a colaboração em
código mais fácil.

Hoje em dia, o GitHub é como um playground para desenvolvedores. Eles podem compartilhar seu código, trabalhar
juntos em projetos e controlar as mudanças que fazem. É como um superclube de programadores, onde todos podem
aprender e criar juntos.

Módulo 4 - Gerenciando seu código com maestria 3

É um lugar onde a magia da programação
acontece, onde ideias se transformam em
software e onde pessoas de todo o mundo se
conectam por meio do código. Uma história
incrível de como uma ideia simples se tornou um
dos lugares mais importantes para os
desenvolvedores.

Git e GitHub: Qual é a diferença?
Às vezes, as pessoas confundem o Git com o
GitHub. É como confundir um arquivo de vídeo no
seu computador com o YouTube.

O YouTube é como um lugar onde você pode levar
um vídeo do seu computador e compartilhá-lo com
o mundo. Ele hospeda seus vídeos, permite que
outras pessoas assistam e comentem.

Da mesma forma, o GitHub é como um "YouTube" para os projetos de programação, mas não para vídeos, para os
arquivos de código (chamados de repositórios Git). É como se você estivesse compartilhando uma pasta com todos os
arquivos do seu projeto. No GitHub, outras pessoas podem acessar e baixar essa pasta, deixar comentários e até
mesmo contribuir com melhorias no seu projeto.

Assim como o YouTube tem canais para organizar vídeos, o GitHub possui contas. Cada conta no GitHub é como a sua
vitrine, onde você pode mostrar seus projetos, adicionar informações sobre si mesmo e interagir com outros
programadores.

O GitHub é uma comunidade de programadores onde você pode compartilhar e colaborar em projetos. O primeiro passo
é criar uma conta gratuita em github.com.

Resumindo, o Git é como o seu arquivo de vídeo e o GitHub é como o YouTube para projetos de programação. 🚀

Links importantes

Learn Git Branching

An interactive Git visualization tool to educate and challenge!

https://learngitbranching.js.org/?locale=pt_BR

10 comandos do Git que todo desenvolvedor deveria conhecer

O Git é uma parte importante da programação no dia a dia (especialmente se você estiver
trabalhando em equipe) e é amplamente usado no setor de software. Como existem muitos
comandos que você pode utilizar, dominar o Git por completo leva tempo. Alguns comandos, no

https://www.freecodecamp.org/portuguese/news/10-comandos-do-git-que-todo-desenvolvedor-d
everia-conhecer/

Comandos Básicos de GIT

Mais informações sobre GIT básicos podem ser recuperados aqui. Neste tutorial, os comandos git
mais básicos serão falados.

http://hostinger.com.br/tutoriais/comandos-basicos-de-git

Em 2018, a Microsoft viu o potencial do GitHub e o adquiriu. Mas não se
preocupe, ele ainda é independente e comprometido com o código aberto.

https://github.com/signup
https://learngitbranching.js.org/?locale=pt_BR
https://www.freecodecamp.org/portuguese/news/10-comandos-do-git-que-todo-desenvolvedor-deveria-conhecer/
http://hostinger.com.br/tutoriais/comandos-basicos-de-git

Módulo 4 - Gerenciando seu código com maestria 4

Top 25 comandos do Git

Controle de Versão, Controle de Revisão, Controle de Origem, ou os termos originais em inglês
Version Control, Source Control, tanto faz o nome. Esse processo lida com o gerenciamento de
alterações em documentos, programas de computador, sites da Web ou apenas sobre qualquer

https://www.codigofonte.com.br/artigos/top-25-comandos-do-git

Como instalar o Linux dentro do Windows usando WSL?

CURADORIA DE CONTEÚDO

Eu separei alguns vídeos públicos no YouTube que podem ser úteis para te ajudar na instalação do Linux dentro do
seu sistema Windows.

Essa instalação pode ser útil para que você tenha mais interação com o Linux dentro do mesmo ambiente Windows e
possa utilizar os comandos do terminal Linux sem muitos problemas.

WSL 2 - A solução para rodar Linux dentro do Windows 10 - Root #08

✅ Inscreva-se na NLW Heat: https://bit.ly/3FRg4Nx

Vamos instalar o WSL2, subsistema do Windows para linux, permitindo que seja executado um

https://www.youtube.com/watch?v=hd6lxt5iVsg&ab_channel=Rocketseat

Como instalar o Linux no Windows com WSL

🌐 Descubra o Caminho Mais Curto para se tornar um Programador! Conheça a Comunidade
DevPro: https://l.dev.pro.br/comunidade-dev-pro-yt

https://www.youtube.com/watch?v=MaTe1qBTaic&ab_channel=CanalDevPro

Quais são os principais comandos do terminal Linux?

Comandos Básicos do Terminal Bash
O terminal Bash é uma ferramenta poderosa para interagir com o sistema operacional Linux. Vamos aprender alguns
comandos básicos:

🖥️ Comando pwd - Mostrar Diretório Atual

Para descobrir em qual diretório você está no momento, use o comando pwd (Print Working Directory):

pwd

🖥️ Comando ls - Listar Arquivos e Diretórios

O comando ls é usado para listar o conteúdo de um diretório:

ls

Opção ls -l ou ll - Lista Detalhada

https://www.codigofonte.com.br/artigos/top-25-comandos-do-git
https://www.youtube.com/watch?v=hd6lxt5iVsg&ab_channel=Rocketseat
https://www.youtube.com/watch?v=MaTe1qBTaic&ab_channel=CanalDevPro

Módulo 4 - Gerenciando seu código com maestria 5

Para obter uma lista detalhada dos arquivos e diretórios, use ls -l :

ls -l

🖥️ Comando cd - Navegar entre Diretórios

O comando cd é usado para entrar em diretórios:

cd nome_do_diretorio

🖥️ Comando rm - Remover Arquivos e Diretórios

O comando rm no terminal Linux é usado para remover arquivos e diretórios. No entanto, é essencial usá-lo com
cuidado, pois a exclusão é permanente e não pode ser desfeita.

rm arquivo.txt # Remove um arquivo

rm -r diretorio # Remove um diretório e seu conteúdo (recursivamente)

Remover Arquivos:

Para remover um arquivo específico, você pode usar o rm seguido do nome do arquivo. Por exemplo:

rm arquivo.txt

Remover Diretórios Vazios:

Para remover um diretório vazio (sem arquivos dentro), use o rm com a opção -d . Por exemplo:

rm -d diretorio_vazio/

Remover Diretórios com Conteúdo:

Para remover um diretório e seu conteúdo, você deve usar o rm com a opção -r (recurse). Por exemplo:

rm -r diretorio_com_conteudo/

Remover Diretórios e seu Conteúdo de Forma Forçada:

Às vezes, você pode encontrar diretórios ou arquivos protegidos contra exclusão e, nesse caso, você pode usar a
opção -f (force) para forçar a remoção. No entanto, tenha muito cuidado ao usar -f , pois ele não pedirá
confirmação e excluirá tudo sem perguntar. Por exemplo:

rm -rf diretorio_com_conteudo_protegido/

Tenha em mente que a exclusão é uma operação irreversível, portanto, use esses comandos com extrema precaução
e certifique-se de que você está excluindo os arquivos e diretórios corretos. Verifique duas vezes antes de pressionar
Enter, especialmente ao usar as
opções -r ou -f .

🖥️ Comando mkdir - Criar Diretório

O comando mkdir é usado para criar um novo diretório:

mkdir nome_do_diretorio

🖥️ Comando cp - Copiar Arquivos e Diretórios

O comando cp é usado para copiar arquivos e diretórios:

Módulo 4 - Gerenciando seu código com maestria 6

cp arquivo.txt destino/ # Copia um arquivo para um diretório

cp -r diretorio/ destino/ # Copia um diretório e seu conteúdo para outro local

🖥️ Comando mv - Mover/Renomear Arquivos e Diretórios

O comando mv é usado para mover ou renomear arquivos e diretórios:

mv arquivo.txt novo_nome.txt # Renomeia um arquivo

mv arquivo.txt destino/ # Move um arquivo para outro local

mv arquivo.txt pasta/novo_nome.txt # Move um arquivo para outro local e renomeia

🖥️ Comando touch - Criar Arquivos Vazios

O comando touch é usado para criar arquivos vazios:

touch novo_arquivo.txt

🖥️ Comando cat - Exibir Conteúdo de Arquivos

O comando cat é usado para exibir o conteúdo de arquivos:

cat arquivo.txt

🖥️ Comando cat > - Criar ou Sobrescrever Arquivos

O comando cat > é usado para criar ou sobrescrever o conteúdo de arquivos:

cat > novo_arquivo.txt

Digite o conteúdo e pressione Ctrl + D para salvar ou Ctrl + C para encerrar.

Referências

Iniciando o uso do terminal do linux

Uma das coisas que mais assusta pessoas que não conhecem ou estão iniciando na área de
computação é o uso do terminal em um sistema Linux. Eu, assim como muitos, relutei muito
para começar a utilizar, até o momento que não tive saída, mas me surpreendi muito, não é que

https://www.ufsm.br/pet/sistemas-de-informacao/2020/04/29/iniciando-o-uso-do-terminal-do-l
inu

40 Comandos Linux Que Todo Usuário Deve Conhecer

Que tal 40 Comandos Linux para você aprender e conseguir usar o sistema operacional com
muito mais propriedade? Aqui tem!

https://www.hostinger.com.br/tutoriais/comandos-linux

Editor de texto no terminal

Vim
O vim é um editor de texto avançado que é muito poderoso, mas também pode
parecer complexo para iniciantes. Aqui estão os conceitos básicos:

Abrir um arquivo com o Vim:

Digite o seguinte comando no terminal:

https://www.ufsm.br/pet/sistemas-de-informacao/2020/04/29/iniciando-o-uso-do-terminal-do-linu
https://www.hostinger.com.br/tutoriais/comandos-linux

Módulo 4 - Gerenciando seu código com maestria 7

vim nome_do_arquivo

Pressione a tecla Enter .

Navegar no Vim:

Use as teclas de seta ou as teclas h (esquerda), j (baixo), k (cima) e l (direita) para se mover pelo texto.

Inserir texto:

Para começar a inserir texto, pressione a tecla i . Você verá "-- INSERT --" na parte inferior.

Agora você pode digitar o texto normalmente.

Salvar e sair do Vim:

Pressione a tecla Esc para sair do modo de inserção.

Digite :w e pressione Enter para salvar o arquivo.

Digite :q e pressione Enter para sair do Vim.

Salvar e sair de uma vez:

Para salvar e sair em um único comando, você pode digitar :wq e pressionar Enter .

Nano
O nano é um editor de texto mais simples e amigável para iniciantes. Aqui estão os
conceitos básicos:

Abrir um arquivo com o Nano:

Digite o seguinte comando no terminal:

nano nome_do_arquivo # Exemplo: teste.txt

Pressione a tecla Enter .

Navegar no Nano:

Use as teclas de seta para se mover pelo texto.

Inserir texto:

Basta começar a digitar. Não há necessidade de entrar em um modo especial.

Salvar e sair do Nano:

Pressione Ctrl + O para salvar o arquivo.

Ele pedirá que você confirme o nome do arquivo. Pressione Enter .

Para sair, pressione Ctrl + X .

GitHub: Os primeiros passos
Se você quer ser um programador de verdade, então precisa ter uma conta no GitHub.

Por que? Porque o GitHub é a maior plataforma de hospedagem de código-fonte e arquivos usando controle de versão
Git.

Isso significa que muitas pessoas e empresas utilizam o GitHub para manter os seus projetos e além disso, você pode
pesquisar diversos repositórios de código aberto que podem te ensinar sobre algo e ajudar no seu projeto de software.

Agora, que você sabe disso, vamos criar a sua conta!

Clicando no link abaixo, você vai cair direto na página de cadastro 👇🏻

Módulo 4 - Gerenciando seu código com maestria 8

GitHub

GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and
contribute to over 330 million projects.

https://github.com/signup

Criando um repositório no GitHub
Quando você estiver logado na sua conta do GitHub, você irá perceber um ícone de ✚ bem no canto superior direito,
igual a imagem abaixo:

Basta você clicar em New repository e você poderá preencher os dados relacionados ao seu repositório. Eu explico isso
durante a aula com título “Criando nosso repositório remoto no GitHub”, se tiver alguma dúvida, basta assistir.

Gerando uma chave SSH
Para que você possa interagir com seu repositório remoto dentro do GitHub usando o Git, você precisará configurar a
sua chave SSH.

Essa chave será responsável por identificar o seu computador como “autorizado para subir atualizações” para sua conta
no GitHub. Ou seja, a chave SSH vai ser um “crachá de identificação” que irá permitir que você faça o upload dos seus
códigos para o GitHub.

Se você quiser um pouco mais sobre o que é o SSH, que é um protocolo de rede, acesse o link abaixo para ler uma
explicação sobre isso diretamente da documentação do GitHub.

Sobre o SSH - GitHub Docs

Usando o protocolo SSH, você pode se conectar a servidores e serviços remotos e se autenticar
neles. Com chaves SSH, você pode se conectar a GitHub sem fornecer seu nome de usuário e
personal access token em cada visita. Você também pode usar uma chave SSH para assinar

https://docs.github.com/pt/authentication/connecting-to-github-with-ssh/about-ssh

Agora que você já sabe o que é o SSH, você precisa gerar as suas chaves.

Para isso, eu vou deixar outro link diretamente da
documentação do GitHub para que você possa acessar e
ver o passo a passo de acordo com o seu sistema
operacional.

Gerando uma nova chave SSH e adicionando-a ao agente SSH - GitHub Docs

Depois de verificar a existência de chaves SSH, é possível gerar uma nova chave SSH para
autenticação e adicioná-la ao ssh-agent.

https://docs.github.com/pt/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-a
nd-adding-it-to-the-ssh-agent?platform=windows

https://github.com/signup
https://docs.github.com/pt/authentication/connecting-to-github-with-ssh/about-ssh
https://docs.github.com/pt/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=windows

Módulo 4 - Gerenciando seu código com maestria 9

Você pode selecionar o seu sistema operacional nessa parte do site onde deixei a seta roxa.

A importância do README para o seu repositório

Primeiro, o que é README?

📌 README.md é um arquivo com extensão .md (Markdown). Contém informações necessárias para entender o
objetivo do projeto. README é uma palavra em inglês que traduzida fica LEIAME.

Você já deve ter baixado algum software que tinha um arquivo LEIAME.txt com algumas instruções de como
usar.

Podemos considerar o README como um cartão de visita do seu projeto no Github ou em outras plataformas
de repositórios remotos de código

E o que é Markdown?

📌 O Markdown é uma ferramenta de conversão de texto em HTML. Você escreve usando texto simples de fácil
leitura e fácil escrita e depois é transformado em um HTML válido.

Qual a vantagem de escrever um README?

🎯 Os recrutadores também observam esse aspecto. A cultura da empresa desempenha um papel
significativo, e muitas delas valorizam muito o uso do GitHub.

Uma vez que a maioria dos recrutadores não possui conhecimento técnico, a simples leitura do seu README
em seu repositório pode fornecer a eles uma compreensão geral do que você realizou e uma ideia da
complexidade das tecnologias envolvidas.

Este é um valioso portfólio e uma maneira eficaz de destacar o seu trabalho. Algumas empresas nem mesmo
solicitam currículos; elas preferem avaliar suas habilidades na prática. A abordagem mais eficaz é demonstrar
suas habilidades por meio de um projeto de teste ou apresentando projetos anteriores.

Como escrever um bom README?

Eu vou deixar alguns links abaixo para te ajudar nesse processo.

readme.so

Use readme.so's markdown editor and templates to easily create a ReadMe for your projects

https://readme.so/pt/editor

Como escrever um bom arquivo README para seu projeto do GitHub

Quando me apresentaram o GitHub, eu não tinha ideia do que era ou do que podia fazer. Cá entre
nós, eu criei uma conta porque me disseram que todo desenvolvedor deveria ter uma para poder
colocar seu código. Na maior parte do meu tempo de iniciante, eu não fiz nada

https://www.freecodecamp.org/portuguese/news/como-escrever-um-bom-arquivo-readme-para-seu
-projeto-do-github

Guia de Comandos Básicos do Git
O Git é uma ferramenta poderosa para o controle de versão de projetos. Para começar a usá-lo efetivamente, é essencial
conhecer os comandos básicos. Abaixo estão os comandos mais importantes do Git e suas respectivas explicações:

git status

http://readme.md/
https://guides.github.com/features/mastering-markdown/
https://readme.so/pt/editor
https://www.freecodecamp.org/portuguese/news/como-escrever-um-bom-arquivo-readme-para-seu-projeto-do-github

Módulo 4 - Gerenciando seu código com maestria 10

O comando git status é seu aliado para verificar o estado atual do seu repositório. Ele fornece informações sobre quais
arquivos foram modificados, quais estão pendentes de serem adicionados ou confirmados, e muito mais. Use este
comando frequentemente para acompanhar o progresso do seu trabalho.

Exemplo:

git status

git log

O comando git log permite visualizar o histórico de commits no seu repositório. Ele exibe informações sobre os
commits, como o hash do commit, autor, data e mensagem de confirmação. É útil para entender o que foi feito no projeto
e para rastrear alterações.

Exemplo:

git log

git add

Antes de confirmar suas alterações, você precisa "preparar" os arquivos usando git add . Este comando coloca as
mudanças na área de preparação (staging area) para que você possa incluí-las no próximo commit.

Exemplo:

git add nome-do-arquivo

git commit

Após adicionar as mudanças com git add , use git commit para criar um novo commit com um registro das alterações
feitas. Certifique-se de incluir uma mensagem descritiva para que outros colaboradores entendam o motivo da alteração.

Exemplo:

git commit -m "Mensagem descritiva da alteração"

git remote

git remote lida com repositórios remotos, que são versões do seu projeto hospedadas em servidores na nuvem ou em
outros locais. Você pode listar os repositórios remotos associados ao seu projeto com este comando.

Exemplo:

git remote -v

git checkout

O comando git checkout permite alternar entre ramos (branches) no Git. Você pode criar um novo ramo ou mudar para
um existente. Isso é útil para trabalhar em recursos isoladamente e evitar conflitos.

Exemplo (criar um novo ramo):

git checkout -b nome-do-ramo

git branch

O comando git branch lista todos os ramos disponíveis no repositório. Ele também indica em qual ramo você está
atualmente. Isso é útil para ter uma visão geral dos ramos disponíveis.

Exemplo:

Módulo 4 - Gerenciando seu código com maestria 11

git branch

git fetch

git fetch é usado para buscar atualizações de um repositório remoto. Ele sincroniza o histórico e as ramificações, mas
não aplica as mudanças no seu ramo atual. Use este comando quando desejar atualizar seu repositório com as últimas
alterações do repositório remoto.

Exemplo:

git fetch origin

git push

git push envia as mudanças confirmadas do seu repositório local para um repositório remoto. Isso é importante para
compartilhar seu trabalho com outros colaboradores ou manter um backup atualizado.

Exemplo:

git push origin nome-do-ramo

git pull

git pull é usado para buscar e aplicar as mudanças do repositório remoto no seu repositório local. Isso é útil quando
você deseja atualizar seu projeto com as últimas alterações feitas por outros colaboradores.

Exemplo:

git pull origin nome-do-ramo

Lembre-se de que esses são apenas alguns dos comandos essenciais do Git. À medida que você se familiariza com o
Git, pode explorar comandos adicionais para realizar tarefas mais avançadas. O Git é uma ferramenta poderosa para o
controle de versão, e dominar esses comandos é fundamental para gerenciar projetos de software com eficiência.

Sobre o “origin” do repositório remoto dentro do Git
No contexto do Git, "origin" é o nome padrão dado ao repositório remoto a partir do qual você clonou (copiou) ou com o
qual você está colaborando. O "origin" é uma convenção utilizada, mas não é um termo reservado ou uma palavra-chave
do Git; você pode dar a um repositório remoto o nome que desejar.

Quando você clona um repositório ou configura um repositório remoto manualmente, geralmente ele é automaticamente
nomeado como "origin". Esse nome é apenas uma referência amigável que facilita o trabalho com repositórios remotos,
pois é um nome curto e fácil de lembrar.

A principal função do "origin" é permitir que você se comunique com o repositório remoto, facilitando o envio de suas
alterações para ele (usando git push) e a obtenção das últimas alterações feitas por outros colaboradores (usando git
pull ou git fetch).

Lembre-se de que você pode ter vários repositórios remotos em um único projeto Git, cada um com seu próprio nome
(por exemplo, "upstream", "myfork", etc.). O "origin" é simplesmente o nome padrão dado ao primeiro repositório remoto
com o qual você está trabalhando, mas você pode adicionar outros repositórios remotos e nomeá-los de acordo com
suas necessidades.

Portanto, quando você vê referências a "origin" em comandos Git, está se referindo ao repositório remoto padrão com o
qual você está colaborando, mas esse nome pode ser alterado para corresponder à sua configuração específica.

Próximo módulo 🔜
Wooow, parabéns por ter chegado até aqui!

O aprendizado do Git é algo que depende muito da repetição e prática. Por isso, sempre que possível, esteja praticando
e revisando os comandos.

Caso tenha ficado alguma dúvida, aproveite para revisar as aulas e não esqueça de responder aos exercícios deste
módulo.

Módulo 4 - Gerenciando seu código com maestria 12

Agora, no próximo módulo vamos falar sobre como “Fundamentos da programação web”, e assim vamos aprender
sobre toda a base de protocolos e arquitetura por de baixo dos panos da internet.

Com esse conhecimento, você será capaz de entender toda a sequência de aprendizado que vamos ter nos módulos
seguintes e colocar a mão na massa. Até a próxima!

