25/01/2020 Design Patterns Java II: Aula 1 - Atividade 2 Fabricas e o problema de criagdo de objetos | Alura - Cursos online de tecnologia

O o2
Fabricas e o problema de criacao de objetos

Em linguagens orientadas a objetos, estamos bastante acostumados a instanciar objetos o tempo todo. E isso é

geralmente feito de forma facil: basta dar um new no objeto e fazer uso da instancia retornada.

Mas, as vezes essa criagdo pode nédo ser tdo simples assim. Por exemplo, veja o cddigo abaixo, onde nosso programa

principal captura uma conexao com o banco de dados (fazendo uso de JDBC tradicional) e faz uso dela:

public class MeuAplicativo {

public static void main(String[] args) throws SQLException {
Connection conexao =
DriverManager.getConnection("jdbc:mysqgl://localhost:3306/banco”, "usuario”, "se

PreparedStatement ps = conexao.prepareStatement("select * from ...");
// codigo continua aqui

Veja a linha que cria uma conex@o: DriverManager.getConnection() . Mas veja que s6 nessa linha temos muitas
informagdes importantes: tipo do banco de dados (MySql), endereco do banco (localhost), nome do banco (banco),

usuario e senha.

Agora imagine que devemos usar essa linha em todo lugar que precisa de uma conexao com o banco de dados. O que

aconteceria se precisassemos trocar, por exemplo, o endereco do banco de dados?

Precisariamos propagar a mudanca para todos os pontos que pedem uma conexao. Isso significa um trabalho grande

demais, e que com certeza, ndo fariamos corretamente.

Para resolver esse problema, podemos isolar esse processo de criacido do banco de dados em uma classe especifica, que

s6 faz isso. Por exemplo:

public class ConnectionFactory {

public Connection getConnection() {

try {
Connection conexao =

DriverManager.getConnection("jdbc:mysql://localhost:3306/banco”, "usuario",

return conexao;
} catch (SQLException e) {
throw new RuntimeException(e);

Veja que a classe acima agora cria a Conex@o e retorna o objeto criado. Agora, todos que quiserem fazer uso de uma

conexdo devem fazer new ConnectionFactory().getConnection() .

https://cursos.alura.com.br/course/design-patterns-2/task/3960 12



25/01/2020 Design Patterns Java II: Aula 1 - Atividade 2 Fabricas e o problema de criagdo de objetos | Alura - Cursos online de tecnologia

Isso quer dizer que, se precisarmos mudar a string de conexao, basta agora mudar na classe que escrevemos, e a

mudanga serd automaticamente propagada. Muito mais facil!

Quando precisamos isolar o processo de criacdo de um objeto, para facilitar a troca dele no futuro, levamos o processo

de instanciacdo dessa classe para uma Factory .

No primeiro curso, tinhamos também um exemplo de um objeto que é dificil de ser criado. Demos o exemplo da classe
NotaFiscal . L4, uma nota fiscal era composta por nome da pessoa, itens da nota, valor do imposto, e etc. Tudo isso

tornava o objeto dificil de ser criado, e portanto fizemos uso de um Builder .

Factories e Builders sdo classes cuja responsabilidade é lidar com o processo de criacdo de objetos complexos. Faga uso

de Factories sempre que a cria¢do de um objeto possa mudar em algum momento.

https://cursos.alura.com.br/course/design-patterns-2/task/3960 2/2



