
25/01/2020 Design Patterns Java II: Aula 1 - Atividade 2 Fábricas e o problema de criação de objetos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3960 1/2

 02
Fábricas e o problema de criação de objetos

Em linguagens orientadas a objetos, estamos bastante acostumados a instanciar objetos o tempo todo. E isso é

geralmente feito de forma fácil: basta dar um new no objeto e fazer uso da instância retornada.

Mas, às vezes essa criação pode não ser tão simples assim. Por exemplo, veja o código abaixo, onde nosso programa

principal captura uma conexão com o banco de dados (fazendo uso de JDBC tradicional) e faz uso dela:

Veja a linha que cria uma conexão: DriverManager.getConnection() . Mas veja que só nessa linha temos muitas

informações importantes: tipo do banco de dados (MySql), endereço do banco (localhost), nome do banco (banco),

usuário e senha.

Agora imagine que devemos usar essa linha em todo lugar que precisa de uma conexão com o banco de dados. O que

aconteceria se precisássemos trocar, por exemplo, o endereço do banco de dados?

Precisaríamos propagar a mudança para todos os pontos que pedem uma conexão. Isso signi�ca um trabalho grande

demais, e que com certeza, não faríamos corretamente.

Para resolver esse problema, podemos isolar esse processo de criação do banco de dados em uma classe especí�ca, que

só faz isso. Por exemplo:

Veja que a classe acima agora cria a Conexão e retorna o objeto criado. Agora, todos que quiserem fazer uso de uma

conexão devem fazer new ConnectionFactory().getConnection() .

public class MeuAplicativo {

 public static void main(String[] args) throws SQLException {
 Connection conexao =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/banco", "usuario", "sen

 PreparedStatement ps = conexao.prepareStatement("select * from ...");
 // codigo continua aqui
 }
}

public class ConnectionFactory {

 public Connection getConnection() {
 try {
 Connection conexao =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/banco", "usuario",

 return conexao;
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }
}

25/01/2020 Design Patterns Java II: Aula 1 - Atividade 2 Fábricas e o problema de criação de objetos | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/design-patterns-2/task/3960 2/2

Isso quer dizer que, se precisarmos mudar a string de conexão, basta agora mudar na classe que escrevemos, e a

mudança será automaticamente propagada. Muito mais fácil!

Quando precisamos isolar o processo de criação de um objeto, para facilitar a troca dele no futuro, levamos o processo

de instanciação dessa classe para uma Factory .

No primeiro curso, tínhamos também um exemplo de um objeto que é difícil de ser criado. Demos o exemplo da classe

NotaFiscal . Lá, uma nota �scal era composta por nome da pessoa, ítens da nota, valor do imposto, e etc. Tudo isso

tornava o objeto difícil de ser criado, e portanto �zemos uso de um Builder .

Factories e Builders são classes cuja responsabilidade é lidar com o processo de criação de objetos complexos. Faça uso

de Factories sempre que a criação de um objeto possa mudar em algum momento.

