
Criando seu Setup para Programação
Python

Asimov Academy

Criando seu Setup para Programação Python

Conteúdo

01. O que você vai aprender 5
O que motivou este curso? . 5
Como o curso está estruturado? . 6

02. O que é um terminal? 7
A história de um terminal . 7
Terminais nos computadores modernos . 9
Nomenclatura de terminais . 10
A linguagem dos terminais . 11

03. O terminal do Windows 12
Comandos básicos . 12
Rodando programas pelo terminal . 15
Variáveis de ambiente . 18

04 Instalando Python no Windows 24
Instalação do Python . 24
Verificando sua instalação . 27

Onde Python foi instalado? . 28
Instalando dependências . 29

Rodando scripts de Python . 32

05. O terminal do Mac 34
Caminhos em sistemas UNIX . 34
Comandos básicos . 34
Executáveis e as variáveis de ambiente . 36
Python em Mac . 37

06. Instalando Python no Mac 39
Verificando sua instalação . 41
Onde Python foi instalado? . 42
Instalando dependências . 43
Rodando scripts de Python . 44

07. O terminal do Linux 47
Caminhos em sistemas UNIX . 47
Comandos básicos . 47
Executáveis e as variáveis de ambiente . 49

Asimov Academy 1

Criando seu Setup para Programação Python

Python em Linux . 50

08. Instalando Python no Linux 53
Como instalar Python pelo código-fonte . 53

Baixando e extraindo código-fonte . 53
Instalando as dependências de compilação . 55
Compilando Python . 55
Opções de instalação . 57

Verificando sua instalação . 58
Instalando dependências . 60
Rodando scripts de Python . 61

09. Outras opções de instalação 63
Instalando Anaconda . 63
Anaconda Navigator . 66
Devo usar o Anaconda? . 70

10. O que são IDEs? 71
Interface de uma IDE . 71

11. Instalando e configurando o VS Code 73
Instalação . 73
Uso básico do VS Code . 75
Configuração para código Python . 79
Depuração de código . 82
Qual Python o VS Code está usando? . 85
Configurações adicionais . 86

12. Instalando e configurando o PyCharm 87
Instalação . 87
Criando um projeto no PyCharm . 89
Uso básico do PyCharm . 93
Configurações diversas do PyCharm . 97

13. O console do IPython 101
Comandos mágicos de IPython . 102
IPython nas IDEs . 104

Asimov Academy 2

Criando seu Setup para Programação Python

14. Jupyter Notebook e Jupyter Lab 106
Os notebooks de Jupyter . 106

Como o Jupyter funciona . 106
Criando e usando um notebook do Jupyter . 107

Célula Markdown . 109
Célula Code . 111
Salvando o arquivo do notebook . 112

JupyterLab . 114

15. Outras opções de IDEs 117
Spyder . 117
Google Colab . 118
PythonAnywhere . 120
Mu . 121

16. O que é um ambiente virtual? 123
A Solução: Ambientes Virtuais . 123
Benefícios dos Ambientes Virtuais . 123
Conclusão . 124

17 - Criando e Ativando seu Ambiente Virtual 125
Criando o Ambiente Virtual . 125

Estrutura Inicial . 125
Criando um Ambiente Virtual para o Projeto A . 125

Ativando o Ambiente Virtual . 126
Conferindo a Instalação . 126

Instalando Dependências no Ambiente Virtual . 126
Criando um Ambiente Virtual para o Projeto B . 126
Gerenciando Dependências com requirements.txt 127
Desativando o Ambiente Virtual . 127
Conclusão . 127

18. Selecionando o Interpretador de Python nas IDEs 128
Introdução . 128
Selecionando o Interpretador no VS Code . 128
Selecionando o Interpretador no PyCharm . 130
Conclusão . 131

Asimov Academy 3

Criando seu Setup para Programação Python

19. Importando arquivos com código – a variável name 132
O problema da importação de scripts . 132
A solução: Usando __name__ . 132
Conclusão . 133

20. Estrutura do projeto e erros de importação 134
Estrutura do Projeto . 134
Problema Comum de Importação . 135
Solução Definitiva: Instalar o Projeto no Ambiente Virtual 136
Conclusão . 137

Asimov Academy 4

Criando seu Setup para Programação Python

01. O que você vai aprender

Neste curso, nosso foco está em aprender a instalar Python no nosso computador e configurar
programas para rodá-lo com sucesso. Vamos também entender para quê serve um terminal, e como
usá-lo para conseguir executar Python sem nenhum problema.

O que motivou este curso?

Existem diversas maneiras de instalarmos Python no nosso computador. Esta flexibilidade é algo
positivo, mas para quem está começando, o número de sugestões diferentes pode ser mais confuso
que útil. Às vezes, encontramos até mesmo opiniões conflitantes em sites e tutoriais espalhados por
aí!

Somado a isso, para os alunos que ainda não possuem familiaridade com ambientes de programação
em geral, há também o estranhamento inicial de utilizar um console, CMD ou terminal. O que são estas
janelas pretas? Posso acabar fazendo algo de errado no terminal? O que é esse tal de “PATH” que fico
ouvindo falar em outras aulas?

Se considerarmos ainda a infinidade de formas e programas para rodar Python, como por exemplo VS
Code, PyCharm, Jupyter Notebook, console de Python, . . . Temos uma grande fonte de dúvidas de
iniciantes. Como configuro cada programa? Cada programa precisa instalar o seu próprio Python?
Rodei um comando de pip install mas a biblioteca não é encontrada, o que aconteceu?

Por mais que estas questões sejam erros tangenciais à linguagem Python em si, quando nos deparamos
com eles (e os iniciantes sempre se deparam com eles), isso torna nossa experiência muito mais
frustrante que o necessário.

Na Asimov Academy, sentimos isso na pele. Vemos muitas dúvidas de setup dos nossos alunos que
são simples de resolver para quem entende o que está acontecendo, mas completamente enigmáticas
para iniciantes.

Foi pensando nisso que decidimos montar um curso só sobre a configuração do seu setup de
programação Python. Aqui você não vai aprender a desenvolver uma habilidade específica, como
construir um dashboard ou realizar uma tipo específico de análise de dados. No lugar disso, você terá
um conhecimento profundo de como Python funciona por “debaixo dos panos”, e como configurar a
instalação de Python em qualquer sistema operacional, seja no seu computador, no dos seus colegas,
ou na sua empresa.

Asimov Academy 5

Criando seu Setup para Programação Python

Como o curso está estruturado?

Vamos começar falando sobre terminais/CMD, e entender alguns comandos básicos no terminal. Em
seguida, aprenderemos a instalar Python nos 3 principais sistemas operacionais: Windows, Mac e
Linux. Por fim, seguiremos para a instalação e configuração de programas para trabalhar com Python,
como VS Code, PyCharm e notebooks do Jupyter.

Vamos trabalhar sempre usando máquinas virtuais (VMs). Para quem não conhece o conceito, uma
VM simula um sistema operacional inteiro rodando dentro do seu computador. Isso será feito para
que a instalação seja feita com sistemas “zerados”, como se você estivesse instalando Python em
um computador que acabou de ser iniciado pela primeira vez. Onde for relevante, vamos também
mencionar as diferenças e particularidades de cada sistema operacional.

Não é estritamente necessário acompanhar 100% das aulas - por exemplo, se você sabe que só vai
trabalhar em Windows, não necessariamente precisa assistir às instalações em Mac e Linux. Dito
isso, ter conhecimento dos outros sistemas operacionais sempre é útil. Mesmo para quem trabalha
em Windows, por exemplo, não é raro ter que interagir com servidores ou serviços Cloud que são
hospedados em Linux. Nunca sabemos quando teremos que usar outro computador, ou ajudar alguém
com alguma configuração!

Então chega de conversa, e vamos aprender!

Asimov Academy 6

Criando seu Setup para Programação Python

02. O que é um terminal?

O terminal é a forma mais direta que você tem para se comunicar com seu computador. Através dele,
é possível rodar programas e comandos que interagem diretamente com seu hardware: disco rígido,
sistema de arquivos do computador, memória RAM, tela, dispositivos conectados. . .

Também é possível rodarmos programas convencionais através do terminal. Na realidade, sempre
que usamos a interface gráfica do nosso computador para rodar um programa ou abrir um arquivo,
por debaixo dos panos o nosso computador envia um comando a um terminal, com uma instrução
como “execute este programa” ou “abra este arquivo com aquele programa”.

O conceito de terminal existe há muitos anos, e se mantém até hoje, tanto por motivos históricos
quanto pela facilidade de uso. Quando estamos acostumados a usar mouse e cliques na tela para
controlar ações do computador, pode parecer estranho ter que digitar um comando no terminal. Mas
com a prática, usar o terminal para rodar algum programa ou comando acaba se tornando mais prático
do que procurá-lo em alguma pasta ou no nosso Desktop.

A história de um terminal

Antes do surgimento dos computadores modernos, os terminais eram equipamentos físicos usados
para executar comandos em computadores. Alguns terminais usavam um display eletrônico para
comunicar com o computador, mas os mais antigos (teletipos) faziam a conexão através de teclas
mecânicas e texto escrito em papel, similares a máquinas de escrever!

A ideia de “printar”, ou exibir algum valor no terminal, vem daqui. Nos teletipos antigos, a saída de um
comando era literalmente impresso em papel!

Asimov Academy 7

Criando seu Setup para Programação Python

Figure 1: Computador PDP–11/70 ao fundo da sala, com um terminal de vídeo e um teletipo à sua
frente

Asimov Academy 8

Criando seu Setup para Programação Python

Figure 2: Terminal VT100, usado para comunicar com o computador PDP-11/70

Terminais nos computadores modernos

Mesmo nos computadores desktop e nos notebooks de hoje em dia, a mesma ideia básica de terminal
persiste: ele serve para comunicar com o sistema operacional. Essa funcionalidade foi preservada
através das décadas porque continuam sendo relevantes hoje em dia, principalmente para progra-
madores e desenvolvedores.

A diferença é que, enquanto nos anos 70 os terminais eram equipamentos físicos, hoje em dia são
programas que rodam dentro do próprio computador.

Dessa forma, o nome correto para os terminais de hoje em dia seria emulador de terminal, já que mer-

Asimov Academy 9

Criando seu Setup para Programação Python

amente “simulam” os equipamentos antigos. Dito isso, no dia a dia é muito mais comum chamarmos
estes programas simplesmente de “terminal”.

Figure 3: Múltiplos emuladores de terminal rodando em um sistema operacional Linux

Nomenclatura de terminais

Há alguns termos que surgem sempre quando falamos de terminais. Provavelmente você já ouviu
falar:

• Terminal
• Shell
• Console
• Prompt de comando
• Linha de comando
• CMD
• . . .

Tecnicamente, cada termo possui uma origem e um significado específicos. Na prática, acabamos
usando todos os termos de forma intercambiável, para representar o terminal. O único detalhe notável
aqui é que CMD geralmente é utilizado para se referir à linha de comando do Windows (e não de Mac
ou Linux).

Asimov Academy 10

Criando seu Setup para Programação Python

A linguagem dos terminais

Quando falamos da “linguagem” usada pelos terminais (isto é, quais comandos os terminais aceitam,
e como são usados), há uma clara separação entre Windows e Mac/Linux. Esta divisão tem motivos
históricos, com base ao sistema que originou cada um destes 3 sistemas operacionais:

• O terminal do Windows é baseado no sistema MS-DOS.
• O terminal de Mac e Linux são baseados no sistema UNIX.

Isto significa que os comandos de terminal em Mac e Linux geralmente são idênticos, mas diferentes
dos comandos em Windows.

A linguagem usada no terminal de Windows também é chamada de CMD (uma vez que o programa
que executa se chama cmd.exe). Em Mac e Linux, a linguagem se chama Bash.

Em termos gerais, a linguagem Bash tem recursos e comandos mais avançados que o CMD. Este é um
dos motivos pelo qual muitos desenvolvedores optam por Mac ou Linux: acesso a um terminal com
mais recursos. Dito isso, em Windows há também o PowerShell, que é uma linguagem expandida
baseada no CMD, e que inclui muitas outras funcionalidades.

Ao longo do curso, vamos abordar as diferenças entre sistemas operacionais quando necessário. Vamos
agora começar com o terminal (ou CMD) do Windows!

Asimov Academy 11

Criando seu Setup para Programação Python

03. O terminal do Windows

O terminal no Windows é acessível buscando pelo programa CMD na barra de busca.

Figure 4: Abrindo o CMD no Windows

Também é possível usar o PowerShell, caso você tenha instalado no seu computador.

Figure 5: Abrindo o PowerShell no Windows

Comandos básicos

Ao abrir o CMD, você verá que ele estará executando da sua pasta de usuário (normalmente, no caminho
C:\Users\seu-nome-de-usuario):

Asimov Academy 12

Criando seu Setup para Programação Python

Figure 6: Tela padrão do CMD

O comandodir é usado para listar os conteúdos dentro da pasta atual. Veja que a sua pasta de usuário
contém as principais pastas que você normalmente acessa pelo Windows Explorer, comoDocuments,
Desktop e Downloads:

Asimov Academy 13

Criando seu Setup para Programação Python

Figure 7: Comando dir

Já o comando cd é usado para mudar de pasta (o nome deriva de Change Directory). Use o comando
cd Downloads para entrar na sua pasta de Downloads, e em seguida o comando dir para exibir
seu conteúdo:

Asimov Academy 14

Criando seu Setup para Programação Python

Figure 8: Comando cd

Mesmo quando uma pasta está vazia, aparecem duas pastas no comando dir: a pasta . (ponto), que
representa a pasta atual, e a pasta .. (ponto ponto), que representa a pasta acima da atual. Para ir
para uma pasta acima da pasta atual, utilize o comando cd ..:

Figure 9: Voltando para pasta anterior com cd ..

Dica: use a teclaTab para autocompletar texto no terminal. Por exemplo, digitecd D e vá apertando
a tecla Tab. Você passará por todos os nomes de pastas que começam com a letra D!

Rodando programas pelo terminal

Através do terminal, é possível rodar programas diretamente. Como um exemplo simples, vamos rodar
o Windows Explorer diretamente seguindo as instruções abaixo.

Entre na pasta C:\Windows usando os comandos cd C:\ e cd WindowsEm seguida, use o co-
mando dir para examinar o conteúdo da pasta. Você deverá encontrar o arquivo explorer.exe
na lista resultante:

Asimov Academy 15

Criando seu Setup para Programação Python

Figure 10: Listando o conteúdo da pasta Windows

Agora, simplesmente escreva explorer.exe e aperte Enter para rodar o Windows Explorer:

Asimov Academy 16

Criando seu Setup para Programação Python

Figure 11: Rodando o Windows Explorer pelo terminal

Tente também rodar o comando python. Se você não tiver Python instalado, o comando não vai ser
reconhecido e você será levado para a instalação de Python pela Microsoft Store:

Asimov Academy 17

Criando seu Setup para Programação Python

Figure 12: Tentando rodar Python sem estar instalado

Mas não instale Python por lá - mais para a frente do curso, veremos como instalar pelo instalador
padrão de Python.

Variáveis de ambiente

Em todos os sistemas operacionais, existe o conceito de variáveis de ambiente. São valores que
ajudam a configurar seu sistema operacional.

Em Windows, podemos acessá-las buscando por “ambiente” ou “environment” (dependendo da
linguagem do seu sistema):

Asimov Academy 18

Criando seu Setup para Programação Python

Figure 13: Acessando as variáveis de ambiente

Em seguida, clicamos no botão de “Variáveis de Ambiente” ou “Environment Variables” na janela que
abre:

Asimov Academy 19

Criando seu Setup para Programação Python

Figure 14: Acessando as variáveis de ambiente

A janela exibe as variáveis definidas para o usuário, e para o sistema como um todo.

Note a existência da variável Path (ou PATH). Esta variável é composta por uma lista de pastas sepa-
radas por ponto-e-vírgula. Estas pastas indicam os locais onde o Windows busca por programas para
executar. Note que a pasta C:\Windows está lá dentro:

Asimov Academy 20

Criando seu Setup para Programação Python

Figure 15: Vendo os valores das variáveis de ambiente

Isto significa que podemos executar o Windows Explorer (e qualquer outro programa na pasta
C:\Windows) de qualquer lugar! Abra um novo CMD e digite explorer.exe para se certificar
disso:

Asimov Academy 21

Criando seu Setup para Programação Python

Figure 16: Executando programas que estão no Path

Esta informação é importante para que consigamos configurar Python no nosso computador: se
instalarmos Python mas não o adicionarmos a uma pasta conhecida pela variável de ambiente
Path, então o Windows não encontrará o programa e não conseguirá executá-lo!

No caso de um programa não ser encontrado (seja por não estar instalado, ou simplesmente por não
estar noPath), o Windows retorna sempre a mensagem de erroxxx não é reconhecido como
um comando interno ou externo, um programa operável ou um arquivo em
lotes, conforme tela abaixo:

Asimov Academy 22

Criando seu Setup para Programação Python

Figure 17: Executando programas fora do Path

Asimov Academy 23

Criando seu Setup para Programação Python

04 Instalando Python no Windows

Instalação do Python

Vamos instalar Python a partir do instalador oficial. Para isso, acesse o site python.org e use a opção de
Download no cabeçalho (ele já deve identificar seu sistema operacional e baixar a versão mais recente
de Python):

Figure 18: Baixando Python do site oficial

Após baixar o instalador, execute-o para chegar na tela abaixo:

Asimov Academy 24

https://python.org

Criando seu Setup para Programação Python

Figure 19: Executando o instalador de Python

Atenção: note que há uma opção para adicionar Python ao PATH. Marque a caixinha na parte de
baixo do instalador para garantir que seu Windows encontrará sua instalação de Python!

Feito o passo acima, clique em Instalar Agora e espere o instalador finalizar.

Na tela final do instalador, há um botão com a opção para Desabilitar o limite de com-
primento de caminhos do Windows. Clique neste botão para não ter problemas com caminhos
de arquivos muito compridos (pode acontecer na sua instalação de Python).

Asimov Academy 25

Criando seu Setup para Programação Python

Figure 20: Tela final do instalador de Python

Pronto, seu Python está instalado! Caso você precise repetir ou modificar algum dos passos acima, é
possível executar o instalador novamente para modificar (ou até mesmo desinstalar) sua instalação de
Python:

Asimov Academy 26

Criando seu Setup para Programação Python

Figure 21: Modificando a instalação de Python

Verificando sua instalação

Se você marcou a opção de adicionar Python ao PATH, então sua instalação deve ser detectável pelo
terminal.

Confirme isto entrando no CMD e digitando python. Se o console de Python aparecer, então a
instalação funcionou! Você pode digitar comandos de Python para testá-lo, ou usar o comando
exit() para voltar ao CMD.

Asimov Academy 27

Criando seu Setup para Programação Python

Figure 22: Testando a instalação de Python

Onde Python foi instalado?

Você pode usar o comando where python para checar a que executável o comando python está
vinculado (lembre-se de executar este comando da interface do CMD, e não do console de Python):

Asimov Academy 28

Criando seu Setup para Programação Python

Figure 23: Comando dir

No caso da imagem acima, note que surgiram dois caminhos, pra dois executáveis distintos. O primeiro
executável está no caminho onde acabamos de instalar Python. O segundo na realidade não se trata
de uma instalação de Python, mas de um executável que abre a Microsoft Store (é o que acontece
quando rodamos python sem ter feito sua instalação antes).

Note que o primeiro caminho retornado por where python tem preferência sobre os demais. Em
outras palavras, o comando python irá sempre executar o Python que acabamos de instalar. Se você
tiver múltiplas instalações de Python, fique atento a qual Python você se refere com este comando no
CMD!

Instalando dependências

A instalação de Python inclui também o comando pip, que é usado para instalar bibliotecas externas
de Python como o Pandas.

Podemos confirmar que o pip foi instalado e está no Path usando where pip:

Asimov Academy 29

Criando seu Setup para Programação Python

Figure 24: Verificando a instalação do pip

Usamos o comando pip install xxx para instalarmos a biblioteca xxx. Teste a instalação do
Pandas com pip install pandas, e espere até aparecer a mensagem de que foi instalado com
sucesso:

Asimov Academy 30

Criando seu Setup para Programação Python

Figure 25: Instalando Pandas com pip

Se quisermos garantir que estamos rodando o pip de uma instalação específica de Python, podemos
também executá-lo a partir do comando python, da seguinte forma: python -m pip install
xxx. Abaixo, fazemos isto para instalar a biblioteca Matplotlib:

Asimov Academy 31

Criando seu Setup para Programação Python

Figure 26: Instalando Matplotlib com pip

E para finalizar a verificação, podemos entrar no console de Python e importar as bibliotecas recém
instaladas:

Figure 27: Verificando a instalação do Pandas

Rodando scripts de Python

Além de executar o console de Python, podemos usar o CMD também para rodar um script de Python.

Para isto, precisamos criar um arquivo de texto simples com a extensão .py, como por exemplo
meu_script.py.

Há diversos programas chamados editores de texto que podem fazer isso. Muitos deles são bastante
poderosos, como o VS Code, mas o próprio bloco de notas do Windows já quebra o galho.

Asimov Academy 32

Criando seu Setup para Programação Python

Dentro do arquivo, incluímos todo o código de Python que queremos que seja executado. En-
tão, pelo CMD, digitamos o comando python seguido do caminho até o script, ex: python
caminho\para\meu_script.py.

Se você preferir, pode também ir até a pasta onde está o script (usando o comando cd) e aí digitar
simplesmentepython nome_do_script.py. Veja os dois exemplos no CMD da imagem abaixo:

Figure 28: Exemplo de execução de script

Asimov Academy 33

Criando seu Setup para Programação Python

05. O terminal do Mac

O terminal do Mac já vem instalado por padrão. Ele é acessível buscando pelo programa Terminal
nos aplicativos instalados:

Figure 29: Abrindo o Terminal no Mac

Caminhos em sistemas UNIX

Como falamos anteriormente, o Mac, assim como o Linux, utiliza como base do seu sistema operacional
o UNIX. Portanto, os comandos no terminal são diferentes que em Windows.

Assim como no Windows, o terminal de Mac executa a partir da sua pasta do usuário (em geral, o cam-
inho/Usuários/seu-nome-de-usuario). Note que o caminho em sistemas UNIX são diferentes
de caminhos no Windows em 2 pontos:

• Utilizam barras para a frente (/), e não barras para trás (\), para delimitar as pastas.
• A pasta raiz do sistema é simplesmente a pasta barra (/), e não o C:\.

Comandos básicos

Você pode usar o comando ls (de “listar”) para exibir as pastas e arquivos:

Asimov Academy 34

Criando seu Setup para Programação Python

Figure 30: Comando ls

Note que na imagem acima executamos também o comando ls -la. Esta porção -la adicionada
ao final do comando são flags que modificam o seu comportamento.

A flag-l faz com que os arquivos apareçam em uma lista vertical, similar ao comandodirde Windows.
Já a flag -a faz com que pastas e arquivos ocultos (que em sistema UNIX, são aqueles com nome
iniciado por ponto) seja exibidos também. Usar -la é apenas uma forma prática de combinar as flags
-l e -a.

Para mudar de diretório, usamos o comando cd (do inglês change directory), que funciona da mesma
forma como em Windows:

Asimov Academy 35

Criando seu Setup para Programação Python

Figure 31: Comando cd

Executáveis e as variáveis de ambiente

Sistemas UNIX também possuem a variável de ambientePATH. Assim como em Windows, essa variável
determinar os locais onde o sistema operacional procura por programas para executar.

Podemos observar o valor da variável PATH no próprio terminal usando o comando echo $PATH:

Figure 32: A variável de ambiente PATH

O resultado é uma lista de pastas do sistema, separadas por :.

Mesmo sem saber, já utilizamos o PATH ao usarmos o comando ls, já que ele é considerado um
programa, que já vem instalado em sistemas UNIX.

Podemos até confirmar isso usando o comando which ls, que mostra o caminho onde o programa
está instalado (é equivalente ao where que vimos no Windows).

Asimov Academy 36

Criando seu Setup para Programação Python

Python em Mac

Se usarmos o comando python ou python3 em Mac, possivelmente iniciaremos um interpretador
de Python, mesmo sem instalar nada.

No exemplo da imagem abaixo, o comandopython inicia o Python na versão 2.7, enquanto o comando
python3 redireciona para a instalação dos “Developer Tools” do Mac (os resultados dos comandos
podem ser diferentes no seu Mac, dependendo da sua versão):

Figure 33: O comando python em Mac

Não queremos usar o Python já instalado por 2 motivos:

• A versão 2 do Python foi descontinuada em 2020, e portanto é altamente recomendável não
utilizá-la hoje em dia.

• Mesmo se você possuir Python 3 previamente instalado no seu sistema, o ideal é nunca mexer
nas instalações de Python do seu sistema. Isso porque parte do seu próprio sistema opera-
cional pode depender de algum pacote, e fazer instalações, atualizações ou modificações pode

Asimov Academy 37

Criando seu Setup para Programação Python

desconfigurá-lo! No lugar disso, vamos instalar Python pela fonte oficial na próxima aula.

Asimov Academy 38

https://www.python.org

Criando seu Setup para Programação Python

06. Instalando Python no Mac

Vamos instalar Python a partir do instalador oficial. Para isso, acesse o site python.org e use a opção de
Download no cabeçalho (ele já deve identificar seu sistema operacional e baixar a versão mais recente
de Python):

Figure 34: Baixando Python do site oficial

Abra o instalador e siga os seus passos (diferente do instalador de Windows, não há nenhum botão ou
opção para marcar):

Asimov Academy 39

https://www.python.org

Criando seu Setup para Programação Python

Figure 35: O instalador de Python

Ao final da instalação, você verá um aviso para executar o arquivo Install Certificates. Este
passo é necessário para que o sua instalação de Python seja compatível com alguns pacotes que
acessam a internet.

Para fazer a instalação, basta abrir a pasta da instalação de Python (em Aplicativos ->
Python3.xx, onde xx é a versão de Python). . .

Asimov Academy 40

Criando seu Setup para Programação Python

Figure 36: Localizando o Install Certificates

. . . E clicar duas vezes para rodar o arquivo e instalar os certificados:

Figure 37: Rodando o Install Certificates

Verificando sua instalação

Abra novamente o terminal, digite o comando python3 (atenção para incluir o 3 no comando) e
confira que o console de Python inicia, para a versão que você acabou de instalar.

Asimov Academy 41

Criando seu Setup para Programação Python

Nele, você pode inserir comandos de Python. Use o atalhoCommand+D (ou digite o comandoexit())
para voltar para o terminal:

Figure 38: Rodando o console de Python

Onde Python foi instalado?

Use o comando which python3 para checar onde está sua instalação de Python. Também é pos-
sível executar which pip3 para checar onde está a instalação do pip (o instalador de pacotes do
Python):

Figure 39: Checando o local de instalação do Python

Asimov Academy 42

Criando seu Setup para Programação Python

Instalando dependências

Para instalar dependências, basta rodar pip3 install e o nome da biblioteca. No exemplo abaixo,
instalamos a biblioteca pandas com pip3 install pandas:

Figure 40: Instalando dependências com pip3

Após a instalação, podemos entrar no console de Python e importar as bibliotecas recém instaladas:

Asimov Academy 43

Criando seu Setup para Programação Python

Figure 41: Checando a instalação do pandas

Rodando scripts de Python

Além de executar o console de Python, podemos usar o comando python3 para rodar algum script
de Python previamente criado.

O Mac não possui nenhum editor de texto bruto (o aplicativo Notes acaba salvando texto formatado,
com informação de cores e fontes). Portanto, vamos usar o editor de texto via terminal chamado nano
para este exemplo. Se preferir, pode baixar algum editor de texto como o VS Code, ou diversos outros
que existem para Mac.

Abaixo, entramos na pasta Desktop e abrimos um arquivo novo com o nano chamado
meu_script.py:

Asimov Academy 44

Criando seu Setup para Programação Python

Figure 42: Acessando o editor de texto nano do terminal

A interface pode ser confusa para quem não está acostumado a rodar programas no terminal. No topo,
aparece um cabeçalho com algumas informações, e no rodapé aparecem alguns atalhos de uso. Por
exemplo, o atalho Control + X é usado para sair do nano e voltar ao terminal.

Escreva o script abaixo dentro do nano:

Figure 43: Editando o arquivo meu_script.py a partir do nano

Em seguida, dê Control + X para sair, e clique em Y para salvar as modificações:

Asimov Academy 45

Criando seu Setup para Programação Python

Figure 44: Salvando o script

O arquivo meu_script.py deverá aparecer no seu desktop. De volta ao terminal, use o comando
python3 meu_script.py para executá-lo:

Figure 45: Rodando o script com Python

Asimov Academy 46

Criando seu Setup para Programação Python

07. O terminal do Linux

O terminal do Linux é praticamente idêntico ao do Mac em termos de comandos. Isso se deve ao fato
de ambos sistemas operacionais funcionarem com base no sistema UNIX.

Procure por um programa de terminal na sua instalação de Linux, ou utilize o atalho Ctrl + Alt +
T já vem instalado por padrão. Ele é acessível buscando pelo programa Terminal nos aplicativos
instalados:

Figure 46: Abrindo o Terminal no Linux

Caminhos em sistemas UNIX

Assim como em Mac, os caminhos em Linux possuem duas diferenças em relação ao Windows:

• Utilizam barras para a frente (/), e não barras para trás (\), para delimitar as pastas.
• A pasta raiz do sistema é simplesmente a pasta barra (/), e não o C:\.

Comandos básicos

Você pode usar o comando ls (de “listar”) para exibir as pastas e arquivos. É o mesmo comando
usado no Mac:

Asimov Academy 47

Criando seu Setup para Programação Python

Figure 47: Comando ls

Note que na imagem acima executamos também o comando ls -la. Esta porção -la adicionada
ao final do comando são flags que modificam o seu comportamento.

A flag-l faz com que os arquivos apareçam em uma lista vertical, similar ao comandodirde Windows.
Já a flag -a faz com que pastas e arquivos ocultos (que em sistema UNIX, são aqueles com nome
iniciado por ponto) seja exibidos também. Usar -la é apenas uma forma prática de combinar as flags
-l e -a.

Para mudar de diretório, usamos o comando cd (do inglês change directory), que funciona da mesma
forma como em Windows e Mac. Aqui, entramos na pasta Documentos e listamos seu conteúdo:

Asimov Academy 48

Criando seu Setup para Programação Python

Figure 48: Comando cd

A pasta está vazia. Por isso, a listagem mostra apenas a pasta atual (representada pelo ponto .) e a
pasta acima (representada pelo ponto-ponto ..).

Note também que, em Linux, o caminho da pasta de usuário (geralmente /home/seu-nome-de-
usuario) é abreviado com um caractere de til (~) no terminal.

Executáveis e as variáveis de ambiente

Sistemas UNIX também possuem a variável de ambientePATH. Assim como em Windows, essa variável
determinar os locais onde o sistema operacional procura por programas para executar.

Podemos observar o valor da variável PATH no próprio terminal usando o comando echo $PATH:

Asimov Academy 49

Criando seu Setup para Programação Python

Figure 49: A variável de ambiente PATH

O resultado é uma lista de pastas do sistema, separadas por :.

Mesmo sem saber, já utilizamos o PATH ao usarmos o comando ls, já que ele é considerado um
programa, que já vem instalado em sistemas UNIX.

Podemos até confirmar isso usando o comando which ls, que mostra o caminho onde o programa
está instalado (é equivalente ao where que vimos no Windows).

Python em Linux

Nas versões mais recentes de Linux, o comando python não é reconhecido. Em versões mais antigas,
ele pode ainda apontar para alguma instalação da versão 2 do Python.

Já o comando python3 tende a ser reconhecido, apontando para uma instalação de Python 3 gerida
pelo próprio sistema operacional:

Asimov Academy 50

Criando seu Setup para Programação Python

Figure 50: O comando python em Linux

Podemos usar o comando which python3 para localizar onde está instalado o Python 3:

Figure 51: O comando python em Linux

Como podemos ver, em geral ele estará instalado em uma das pastas do sistema, uma vez que faz
parte do sistema operacional.

Atenção: por mais que exista uma instalação de Python 3 no seu Linux, o ideal é nunca mexer nas

Asimov Academy 51

Criando seu Setup para Programação Python

instalações de Python do seu sistema. Isso porque parte do seu próprio sistema operacional pode
depender de algum pacote, e fazer instalações, atualizações ou modificações pode desconfigurá-lo!

Alguns tutoriais indicam que você use gerenciadores de pacotes do Linux, como o apt, para instalar
Python. Esta é uma alternativa válida, mas existem 2 problemas com ela:

• Você só conseguirá instalar a versão de Python que o apt está configurado para baixar para a
sua versão de Linux, que pode não ser nem a mais recente, ou a que você deseja:

• Algumas distribuições de Linux podem fazer alterações a esta instalação (por exemplo, mudando
módulos da biblioteca padrão), e isto pode ser indesejável.

No lugar disso, vamos instalar Python pela fonte oficial na próxima aula.

Asimov Academy 52

https://www.python.org

Criando seu Setup para Programação Python

08. Instalando Python no Linux

Como instalar Python pelo código-fonte

Não há instalador de Python para Linux. No lugar disso, temos que baixar o código-fonte e compilar o
programa.

Este processo pode parecer um pouco inusitado, mas não se assuste! O processo envolve apenas alguns
comandos no terminal, e é sempre uma boa ideia para usuários de Linux se acostumar a compilar
programas a partir do seu código-fonte.

Note que, neste tutorial, estamos baixando a versão 3.12 de Python. Se você estiver baixando outra
versão, lembre-se de adaptar os comandos onde aparece o texto 3.12 para a versão que você está
baixando!

Baixando e extraindo código-fonte

Baixe o código-fonte do site python.org:

Figure 52: Baixando Python do site oficial

O arquivo baixado está compactado, portanto é preciso extrair seu conteúdo para uma pasta. Para
isso, use o comando abaixo (lembrando de ajustar o número 3.12.0 de acordo com a versão baixada

Asimov Academy 53

https://www.python.org

Criando seu Setup para Programação Python

de Python):

tar -xf Python-3.12.0.tar.xz

Figure 53: Descompactando o código fonte

Em seguida, use o comandocd Python-3.12.0para entrar na pasta contendo o conteúdo extraído
(ajuste o número da versão de acordo com a versão que você baixou):

Figure 54: Entrando na pasta decompactada

Asimov Academy 54

Criando seu Setup para Programação Python

Instalando as dependências de compilação

Para que seja possível compilar Python em Linux, é preciso baixar as dependências de compilação.
Isto geralmente é feito instalando os pacotes pelo gerenciador de pacotes (apt, yum, pacman) da sua
distribuição Linux.

Para Ubuntu e seus derivados, o comando abaixo faz a instalação de todas estas dependências de uma
única vez através do gerenciador de pacotes apt:

sudo apt-get install build-essential gdb lcov pkg-config \
libbz2-dev libffi-dev libgdbm-dev libgdbm-compat-dev liblzma-dev \
libncurses5-dev libreadline6-dev libsqlite3-dev libssl-dev \
lzma lzma-dev tk-dev uuid-dev zlib1g-dev

Para mais detalhes, veja a seção de instalação de dependências no Guia do Desenvolvedor Python (em
inglês).

Figure 55: Instalando as dependências de compilação

Compilando Python

Uma vez baixadas as dependências, podemos configurar a compilação com o comando:

sudo ./configure

Asimov Academy 55

https://devguide.python.org/getting-started/setup-building/#install-dependencies

Criando seu Setup para Programação Python

Figure 56: Configurando a compilação

O comando sudo faz com que o comando rode com privilégios de administrador. Isso requer que o
seu usuário tenha estes privilégios. Além disso, será necessário digitar a senha do seu usuário para
confirmar a operação (por segurança, nada aparece na tela quando você digita a senha).

Uma grande quantidade de texto irá aparecer no terminal. Espere o prompt retornar ao seu controle, e
em seguida use o comando:

sudo make -j "$(nproc)"

Asimov Academy 56

Criando seu Setup para Programação Python

Figure 57: Compilando Python

Opções de instalação

Quando a compilação terminar, falta apenas instalar o Python! Há duas formas de fazer isso:

• sudo make install: instala Python e sobrescreve o comando python3 do seu sistema.
Em outras palavras, o comando python3 passará a se referir a sua nova instalação de Python.

• sudo make altinstall: instala Python, porém não sobrescreve o comando python3 do
seu sistema. Você consegue acessar o Python do sistema usando o comando python3, e sua
instalação de Python com o comando python3.12 (ou o comando equivalente, de acordo
com a versão instalada).

Não há forma “correta” de instalar. Se você quiser a comodidade de usar o comando python3 para
rodar a sua instalação de Python, use sudo make install. Por outro lado, se você quiser manter
o acesso do Python do sistema e garantir que outros programas consigam acessá-lo, use sudo make
altinstall.

Asimov Academy 57

Criando seu Setup para Programação Python

Figure 58: As opções de instalação de Python

Verificando sua instalação

Pronto! Agora já é possível acessar a nova instalação de Python pelo terminal. A instalação é feita em
uma pasta padrão localizada pelo PATH, portanto ela deve ser encontrada pelo seu terminal.

A imagem abaixo mostra o resultado após a instalação com sudo make altinstall. Veja que
which python3, aponta para a instalação do sistema, enquanto which python3.12 aponta
para a instalação nova:

Asimov Academy 58

Criando seu Setup para Programação Python

Figure 59: Conferindo a instalação

O mesmo acontece para o comando pip (veja que, com a instalação feita pelo altinstall, apenas
o comando pip3.12 foi criado):

Asimov Academy 59

Criando seu Setup para Programação Python

Figure 60: Conferindo a instalação do pip

Instalando dependências

Podemos usar o pip install para instalar dependências (Ao invés de usar pip3.12 install,
você pode preferir o comando python3.12 -m pip install):

Asimov Academy 60

Criando seu Setup para Programação Python

Figure 61: Instalando dependências com pip

Após a instalação, podemos entrar no console de Python e importar as bibliotecas recém instaladas:

Figure 62: Checando a instalação das dependências

Rodando scripts de Python

Além de executar o console de Python, podemos usar o comando python3.12 para rodar algum
script de Python previamente criado.

Praticamente todas as distribuições de Linux possuem algum editor de texto pré-instalado. No caso

Asimov Academy 61

Criando seu Setup para Programação Python

do Ubuntu, basta procurar por “Editor” na barra de busca de aplicativos.

Crie um script chamado meu_script.py e o salve na Área de Trabalho. Em seguida, rode o script
com o comando python meu_script.py, conforme imagem abaixo (veja que é possível rodá-lo
passando o caminho até o script, ou então usando cd para navegar até a sua pasta):

Figure 63: Executando um script de Python

Asimov Academy 62

Criando seu Setup para Programação Python

09. Outras opções de instalação

Além do instalador oficial, há outras opções de instalação dependendo do seu sistema operacional.
Por exemplo, no caso do Windows, já vimos que existe a opção de instalar a partir da Windows Store.

Uma das mais famosas e utilizadas é o Anaconda. O Anaconda é uma instalação completa de Python,
incluindo as principais bibliotecas utilizadas para análise de dados e machine learning.

A instalação padrão inclui o conda, um programa de linha de comando usado para instalar e gerenciar
outros pacotes de Python (e de outras linguagens também), e o Anaconda Navigator, um programa
onde é possível gerenciar sua instalação de Python e de outros programas úteis também.

Instalando Anaconda

Vá até o site de download do Anaconda e clique no botão de Download:

Asimov Academy 63

https://www.anaconda.com/download

Criando seu Setup para Programação Python

Figure 64: Download do Anaconda

Você também pode clicar em Get Additional Installers para ver todas as opções de instal-
adores do Anaconda. O instalador de Windows é gráfico. Em Mac, há a opção de instalador gráfico ou
por linha de comando. Já em Linux, há apenas a opção de instalar por linha de comando.

Asimov Academy 64

Criando seu Setup para Programação Python

Figure 65: Opções de instalação do Anaconda

Após o Download, siga os passos no instalador do Anaconda:

Figure 66: Instalador do Anaconda

Asimov Academy 65

Criando seu Setup para Programação Python

Durante a instalação, note que há uma opção para registrar o Python do Anaconda como opção do
seu sistema. Marcar ajuda o seu sistema a encontrar esta instalação de Python, mas cuidado para não
sobrescrever a instalação anterior!

Figure 67: Opção para registrar o Python do Anaconda como a versão principal do sistema

Anaconda Navigator

Após a instalação, abra o Anaconda Navigator. Este programa serve como um menu interativo, a partir
do qual é possível iniciar um CMD, gerenciar pacotes de Python, e instalar programas externos.

De forma geral, o foco do Anaconda é a ciência de dados. Por isso, ele já vem com um ambiente
de Python pré-configurado com as principais bibliotecas usadas por quem quer trabalhar com ciên-
cia de dados. Além disso, muitos dos programas pré-instalados (ou sugeridos para instalação) são
relacionados à análise de dados:

Asimov Academy 66

Criando seu Setup para Programação Python

Figure 68: Tela inicial do Anaconda Navigator

Experimente abrir o CMD.exe Prompt e veja o output do comando where Python. Este terminal
roda a versão de Python que foi instalada pelo Anaconda! O prefixo (base) indica isso também.

Asimov Academy 67

Criando seu Setup para Programação Python

Figure 69: Rodando o CMD a partir do Anaconda Navigator

Nas outras opções, você pode instalar IDEs e outros programas relacionados à análise de dados. Note
que é até possível instalar a linguagem de programação R e a IDE RStudio a partir do Anaconda
Navigator!

Asimov Academy 68

Criando seu Setup para Programação Python

Figure 70: IDEs e outros programas do Anaconda Navigator

Na aba Environments, é possível ver os pacotes de Python instalados no ambiente do Anaconda.
Também é possível criar ambientes diferentes, cada um com seus próprios pacotes. Por padrão, o
Anaconda vem com apenas um ambiente configurado, chamado base.

Asimov Academy 69

Criando seu Setup para Programação Python

Devo usar o Anaconda?

O Anaconda é de fato bastante poderoso, e bastante útil especialmente para quem quer trabalhar
com ciência de dados. Ele permite ter um ambiente funcional de Python com um único download e
instalação.

Por outro lado, o Anaconda acaba “escondendo” alguns detalhes sobre como Python funciona e
como é instalado. E não é incomum termos alunos com dificuldades em fazer o Python do Anaconda
interagir com outros programas, como VS Code, seja por alguma configuração ligeiramente diferente
da esperada pelo Anaconda, ou por falta de entendimento do aluno sobre como estes programas
funcionam e interagem.

Isso não é demérito do Anaconda, afinal nós mesmos recomendamos seu uso para alunos que estão
começando a aprender a programar, e querem iniciar com Python com o menor número possível de
cliques. Este é apenas um exemplo do equilíbrio que existe entre flexibilidade e simplicidade.

Para um programa como o Anaconda ser simples de instalar, os desenvolvedores tiveram de tomar
várias decisões por você. E por mais que eles tenham pensado em todos os casos possíveis de todos
os usuários, sempre há o risco de você chegar em um ponto onde deseja ter mais flexibilidade.

Por outro lado, flexibilidade demais pode ser uma armadilha, principalmente quando não se entende
exatamente o que está acontecendo. Para quem está começando a programar, a ideia de terminais,
CMD, Python, IDEs, . . . Tudo isso junto, pode confundir mais do que ajudar.

Esse mesmo tipo de ônus e bônus existe em ferramentas de low-code, em comparação à programação
“tradicional”. No fim das contas, cabe a cada um usar a ferramenta que faz sentido para a tarefa. O
objetivo deste curso não é dizer que é melhor usar a ferramenta X ou Y, mas entender como cada uma
funciona e qual seus limites, para que possamos tomar decisões informadas no futuro.

Feito este discurso, seguimos para a instalação e uso de IDEs!

Asimov Academy 70

Criando seu Setup para Programação Python

10. O que são IDEs?

IDEs são programas desenvolvidos especialmente para desenvolver código. O nome significa Ambiente
Integrado de Desenvolvimento (do inglês Integrated Development Environment).

Eles não são programas estritamente necessários para criar e executar códigos de Python. É perfeita-
mente possível fazer isso da forma como fizemos nas aulas anteriores, criando scripts em arquivos de
texto, e depois os executando através do terminal. Dito isso, IDEs facilitam tanto a produtividade de
desenvolvedores, que não faz sentido não utilizá-las.

Dependendo do ambiente que você estiver desenvolvendo (por exemplo, se estiver escrevendo código
diretamente em um servidor através de um terminal), talvez não tenha IDEs disponíveis para usar.
Neste caso, pode ser necessário utilizar formas mais simples, como editores de texto via terminal, para
modificar seus códigos. Mas em todas as outras circunstâncias, faz muito mais sentido utilizar uma
IDE!

Interface de uma IDE

A aparência de uma IDE pode mudar drasticamente entre programas distintos. Dito isso, é esperado
que uma IDE possua algumas telas e ferramentas padrão.

A imagem abaixo (da IDE PyCharm) apresenta as principais áreas de uma IDE tradicional:

Figure 71: A interface de uma IDE

Asimov Academy 71

Criando seu Setup para Programação Python

A seguir, uma explicação de cada um dos elementos:

• Arquivos do projeto: um explorador de arquivos do projeto. Tipicamente, é possível criar,
acessar, modificar, mover e deletar os scripts e demais arquivos com que você está trabalhando.

• Editor de texto: área principal de uma IDE. Aqui, você pode editar o código de um arquivo.
Muitas IDEs oferecem abas ou múltiplas telas no editor de texto, para facilitar o trabalho com
diversos arquivos de código.

• Executar e debugar (ou depurar): botões que permitem rodar o código do arquivo atual, ou
testá-lo através do debugger (depurador) de código. Falaremos mais do debugger nas próximas
aulas!

• Controle de versão: região responsável por integrar seu código com um sistema de versiona-
mento. Neste curso, nós não nos aprofundaremos nesta funcionalidade, mas explicando em
poucas palavras: versionamento de código significa criar versões de cada alteração feita no
seu código, de forma que seja possível revisar e voltar no histórico, caso necessário. O sistema
de versionamento de código mais famoso é o git, e a principal ferramenta para hospedá-lo e
compartilhar código entre diversos desenvolvedores é o GitHub.

• Console de Python: Ambiente rodando um interpretador de Python, a partir do qual é possível
inserir e testar comandos. Equivale a digitar python no CMD. Em uma IDE, sua função é ajudar
a testar código rapidamente, para que seja possível integrá-lo rapidamente ao código do editor
de texto.

• Terminal do sistema operacional: terminal equivalente ao CMD do Windows ou terminal de
Mac e Linux. Permite acesso rápido a comandos do sistema, como já vimos anteriormente.

Vamos agora entender como instalar e configurar as principais IDEs de Python!

Asimov Academy 72

Criando seu Setup para Programação Python

11. Instalando e configurando o VS Code

O Visual Studio Code (VS Code) é um editor de texto criado pela Microsoft. Em sua instalação base, ele
funciona apenas como editor de texto de fato. É preciso usar extensões do VS Code para transformá-lo
em uma IDE, capaz de executar código Python (e de outras linguagens também).

Instalação

Baixe o VS Code do site oficial. São oferecidos instalados para Windows, Mac e Linux:

Figure 72: Download do VS Code

Abra o instalador e vá seguindo pelas telas:

Asimov Academy 73

https://code.visualstudio.com/download

Criando seu Setup para Programação Python

Figure 73: Instalador do VS Code

Na tela abaixo, marque as caixinhas para permitir que o VS Code seja aberto a partir do navegador de
arquivarm os, e também para vincular a abertura de scripts diretamente com o VS Code:

Asimov Academy 74

Criando seu Setup para Programação Python

Figure 74: Opções de instalação do VS Code

Uso básico do VS Code

Com a instalação concluída, abra o VS Code. Você deve chegar na tela abaixo (pode explorar as opções
de boas-vindas se desejar):

Asimov Academy 75

Criando seu Setup para Programação Python

Figure 75: Tela inicial do VS Code

Clique em Arquivo > Novo Arquivo de Texto e escreva qualquer coisa no arquivo. Note que
o tipo de arquivo identificado por padrão é texto sem formatação (Plain Text):

Asimov Academy 76

Criando seu Setup para Programação Python

Figure 76: Arquivo de texto simples

Clique em cima do botão Texto sem Formatação e busque por Python. Com isso, o arquivo será
identificado como um script de Python:

Asimov Academy 77

Criando seu Setup para Programação Python

Figure 77: Escolhendo a sintaxe de Python

Modifique o texto para código Python (use a função print() por exemplo) e veja que o texto muda
de cor para ajudar a escrever o código!

Salve o script (Atalho Ctrl + S) no Desktop. Lembre-se de salvá-lo como um script de Python
(extensão .py):

Asimov Academy 78

Criando seu Setup para Programação Python

Figure 78: Salvando um script de Python

Durante os passos acima, o VS Code provavelmente sugeriu a instalação da extensão de Python. Isso
porque sem ela, é impossível executar código Python no VS Code (lembre-se de que ele é apenas um
editor de texto).

Configuração para código Python

Clique nos ícones de extensões (quadrados empilhados na barra à esquerda), digite Python na caixa
de busca, e baixe a extensão de Python feita pela Microsoft (provavelmente será a primeira da lista e
com o maior número de downloads):

Asimov Academy 79

Criando seu Setup para Programação Python

Figure 79: Instalando a extensão de Python do VS Code

Após a instalação, um botão no formato de seta deverá aparecer no canto superior direito. Clique no
menu em dropdown ao lado do botão, e em seguida na opção “Executar Arquivo Python” para rodar
seu script:

Asimov Academy 80

Criando seu Setup para Programação Python

Figure 80: Executando um script de Python

Ao executar o código, uma aba com um terminal aparecerá na parte de baixo. Este terminal é usado
para rodar o código e exibir seu output:

Asimov Academy 81

Criando seu Setup para Programação Python

Figure 81: Output do script

Com a tela dividida entre editor e terminal, é possível abrir novos terminais, checar erros, modificar as
abas, . . . Experimente com os botões da interface para entender como funcionam!

Depuração de código

A extensão Python do VS Code adiciona também a funcionalidade de debugar ou depurar código. Com
isso, você consegue “pausar” o código em uma linha qualquer e acompanhar o que acontece com as
variáveis a cada linha.

Para usar o debugger, é preciso adicionar um break point no seu código. Este ponto marca a posição
em que o debugger deverá pausar o código. Clique ao lado do número da linha para adicionar um
break point a ela (bola vermelha):

Asimov Academy 82

Criando seu Setup para Programação Python

Figure 82: Adicionando um break point no código

Em seguida, no mesmo dropdown de execução que usamos anteriormente, selecione “Depurar Arquivo
Python”:

Figure 83: Depurando um script

Note que o código no editor ficará pausado na linha contendo o break point. Uma cor amarela no
fundo da linha indica isso.

As janelas do debugger deverão aparecer na lateral e na base do editor, e o controlador para avançar
para próxima linha fica no topo:

Asimov Academy 83

Criando seu Setup para Programação Python

Figure 84: Os controles de depuração

Na aba de “Debug Console”, é possível executar código acessando as variáveis do script (até o ponto
em que foi executado). Avance algumas linhas e veja que o valor das variáveis pode ser acessado neste
console:

Asimov Academy 84

Criando seu Setup para Programação Python

Figure 85: Acessando variáveis no código em depuração

Usando o debugger, é possível inspecionar o valor de qualquer variável durante a execução do código -
muito mais interativo e prático que usar comandos de print() para exibir os valores!

Qual Python o VS Code está usando?

O VS Code está sempre executando com alguma instalação de Python do seu sistema. Se você está
tentando importar pacotes como o pandas, mas na hora de executar no VS Code recebe erros de
“Pacote não encontrado”, provavelmente você instalou o pacote em um Python diferente que o usado
no VS Code!

Para escolher qual Python utilizar, clique no número da versão de Python, no canto inferior direito
do VS Code. Uma janela deverá abrir, exibindo todas as instalações de Python encontradas no seu
sistema:

Asimov Academy 85

Criando seu Setup para Programação Python

Figure 86: Escolhendo a instalação de Python

Se você ainda não encontrar a sua instalação desejada (possivelmente porque ela não está no PATH),
é possível buscar pela instalação de Python no seu explorador de arquivos, ou digitar o caminho
diretamente.

Configurações adicionais

Esta aula mostrou apenas as bases de como executar e depurar código Python no VS Code. Há ainda
muitas extensões para testar e explorar! Se quiser algumas ideias adicionais, leia nosso artigo sobre
como instalar e configurar o VS Code para Python.

Asimov Academy 86

https://asimov.academy/como-instalar-e-configurar-o-vscode/

Criando seu Setup para Programação Python

12. Instalando e configurando o PyCharm

Enquanto o VS Code é uma ferramenta genérica, capaz de ser customizada para qualquer linguagem
através de extensões, o PyCharm tem como foco o desenvolvimento em Python.

O PyCharm é desenvolvido pela empresa JetBrains, que possui uma grande quantidade de IDEs
especializadas para linguagens diferentes.

Instalação

O PyCharm possui duas versões: Community (gratuita) e Professional (paga). A versão paga possui um
teste grátis de 30 dias, e também é gratuita por 1 ano para estudantes com email institucional ativo.

Naturalmente, existem algumas diferenças entre a versão gratuita e paga. Uma das principais é a
integração com Notebooks do Jupyter (que veremos mais pra frente). Mas para quem está começando,
a versão gratuita dá conta de todas as demandas.

Para instalar, acesse a página de download do PyCharm e baixe a versão desejada (neste exemplo
usaremos a gratuita):

Asimov Academy 87

https://www.jetbrains.com/pycharm/download/

Criando seu Setup para Programação Python

Figure 87: Download do PyCharm

Em seguida, siga os passos no instalador:

Asimov Academy 88

Criando seu Setup para Programação Python

Figure 88: Instalador do PyCharm

Criando um projeto no PyCharm

Como o PyCharm já é pensado para desenvolvimento Python, a configuração necessária é mínima.
Por outro lado, o PyCharm segue a lógica de Projetos, em que antes de abrir um script e começar a
programar, é preciso determinar uma pasta para servir como “base” para o seu projeto.

Na tela introdutória abaixo, clique em “New Project”:

Asimov Academy 89

Criando seu Setup para Programação Python

Figure 89: Tela de abertura do PyCharm

O PyCharm irá sugerir uma pasta onde criar seu projeto (modifique caso desejar). Além disso, ele irá
sugerir criar um novo Ambiente Virtual vinculado ao seu projeto:

Asimov Academy 90

Criando seu Setup para Programação Python

Figure 90: Criando um novo projeto

Um ambiente virtual funciona como uma cópia da sua instalação de Python, onde os pacotes instalados
não afetam a sua instalação principal. Isso evita problemas com dependências incompatíveis quando
você tiver múltiplos projetos de Python no mesmo computador.

Neste exemplo, vamos seguir sem ambientes virtuais, mas considere utilizá-los nos seus pro-
jetos futuros. Para escolher a instalação principal de Python, marque a opção Previously
configured interpreter, e em seguida clique em Add Interpreter > Add Local
interpreter...:

Asimov Academy 91

Criando seu Setup para Programação Python

Figure 91: Escolhendo um interpretador de Python

Na janela que abrir, escolha System Interpreter, e em seguida a instalação de Python dese-
jada:

Asimov Academy 92

Criando seu Setup para Programação Python

Figure 92: Escolhendo o interpretador do sistema

Uso básico do PyCharm

Ao criar o projeto, você verá a tela abaixo, já com um script chamado main.py:

Asimov Academy 93

Criando seu Setup para Programação Python

Figure 93: Tela inicial do projeto aberto

Delete o conteúdo dele e escreva algum código qualquer. Você vai perceber de cara que o PyCharm
é mais estrito quanto à escrita de código: ele gera avisos até mesmo de erros de linhas em branco
excessivas, ou erros de ortografia:

Asimov Academy 94

Criando seu Setup para Programação Python

Figure 94: Script com avisos do PyCharm

Os botões de executar e depurar o código estão no canto superior direito:

Figure 95: Botões de execução e depuração

Executando o código, o resultado aparece no terminal abaixo:

Asimov Academy 95

Criando seu Setup para Programação Python

Figure 96: Rodando o script

Clicando o botão de depurar, menus com funcionalidade similar à depuração do VS Code aparecem:

Figure 97: Depurando o script

Asimov Academy 96

Criando seu Setup para Programação Python

Configurações diversas do PyCharm

É possível editar a forma de rodar um script clicando no dropdown ao lado do nome do arquivo
executado e selecionando Edit Configurations... — o menu resultante permite escolher a
pasta de onde executar, que script rodar, comandos ou tarefas adicionais, . . . É possível deixar múltiplos
scripts pré-configurados para execução a partir deste menu:

Figure 98: Configurações de execução

Como explicado anteriormente, a instalação de Python usada é configurada para o projeto como um
todo. Para modificá-la, é possível acessar o menu no canto inferior direito, clicando na versão de
Python:

Asimov Academy 97

Criando seu Setup para Programação Python

Figure 99: Verificando a instalação de Python

Por fim, muitas opções estão dentro dos menus no topo do programa. Alguns itens úteis são File
> New Project... para criar projetos novos, ou Recent Projects para abrir algum projeto
recente. Há também a opção de Settings para configurar todos os aspectos da IDE:

Asimov Academy 98

Criando seu Setup para Programação Python

Figure 100: O menu File

Uma seção interessante na janela de Settings é Plugins. Estes são equivalentes às extensões do VS
Code:

Asimov Academy 99

Criando seu Setup para Programação Python

Figure 101: Instalação de plugins no PyCharm

Asimov Academy 100

Criando seu Setup para Programação Python

13. O console do IPython

O console de Python tradicional (acessível através do comando python no terminal) é útil para testar
códigos simples, mas não tem muitos recursos. Com o tempo, a comunidade desenvolveu um console
mais interativo, chamado de IPython.

É possível instalá-lo com o comando pip install ipython:

Figure 102: Instalando o IPython

Após a instalação, rode com python -m IPython (atenção para as letras maiúsculas):

Figure 103: Executando o IPython

Note que comparado com o console tradicional, ele já vem com cores e linhas mais claras de in-
put/output. Além disso, possui funcionalidade de autocompletar palavras anteriores (use o atalho
Ctrl + E para aceitar a sugestão):

Asimov Academy 101

Criando seu Setup para Programação Python

Figure 104: Exemplo das funcionalidades do IPython

Comandos mágicos de IPython

O IPython permite usarmos “comandos mágicos”, que começam com o sinal de porcentagem (%).
Estes comandos não são código Python, mas ajudam a realizar alguns processos comuns.

Um exemplo é o comando %timeit, que permite medir quanto tempo uma porção de código leva
pra executar:

Asimov Academy 102

Criando seu Setup para Programação Python

Figure 105: O comando mágico %timeit

Já o comando%run permite executar um script de Python, que será carregado para dentro do IPython.
Dessa forma, é possível editar um script e carregar suas variáveis para dentro do IPython!

Asimov Academy 103

Criando seu Setup para Programação Python

Figure 106: O comando mágico %run

IPython nas IDEs

Se o IPython estiver instalado no Python usado em alguma IDE, você terá acesso ao console de IPython
dentro dela. Na imagem abaixo, o comando mágico %run foi usado para executar o script e carregar
suas variáveis diretamente no PyCharm:

Asimov Academy 104

Criando seu Setup para Programação Python

Figure 107: IPython integrado no PyCharm

Asimov Academy 105

Criando seu Setup para Programação Python

14. Jupyter Notebook e Jupyter Lab

Os notebooks de Jupyter

Um notebook de Jupyter é uma forma de combinar blocos de código, imagens, e texto explicativo,
tudo em um mesmo arquivo.

Para instalá-lo, use o comando pip install jupyter:

Figure 108: Instalando o Jupyter

Em seguida, use jupyter-notebook para iniciar o Jupyter:

Figure 109: Inicializando o Jupyter Notebook

Se tudo der certo, aparecerá bastante texto no terminal, e seu computador abrirá o Jupyter automati-
camente no seu navegador web.

Como o Jupyter funciona

O Jupyter funciona como um “servidor local” na sua máquina. Você precisa deixar o terminal aberto
para continuar a ter acesso aos notebooks.

Asimov Academy 106

Criando seu Setup para Programação Python

Caso você feche a janela do navegador, no texto do terminal há o link para acesso direto aos notebooks
pelo seu navegador:

Figure 110: Link para acesso aos notebooks

Por debaixo dos panos, o Jupyter utiliza o mesmo IPython que vimos na aula anterior. A diferença é
que ele é capaz de combinar a utilidade do IPython com uma interface que permite misturar código e
texto. Assim, o resultado fica parecendo de fato um “caderno” de anotações.

Muitos cientistas de dados utilizam o Jupyter para testar código rapidamente, anotar os resultados, e
compartilhá-los com colegas.

Criando e usando um notebook do Jupyter

No navegador, você verá os conteúdos da pasta em que estava no terminal:

Asimov Academy 107

Criando seu Setup para Programação Python

Figure 111: Interface inicial do Jupyter

Para criar seu primeiro notebook, clique no botão New e em seguida Notebook:

Figure 112: Criando um notebook novo

Ao abrir, o Jupyter perguntará qual kernel utilizar (além de Python, Jupyter pode ser usado para rodar
código nas linguagens R e Julia). Escolha Python 3 e clique em Select:

Asimov Academy 108

Criando seu Setup para Programação Python

Figure 113: Escolhendo o kernel

Célula Markdown

O Jupyter funciona com células. Cada célula pode conter código Python (célula do tipo Code) ou
texto formatado (célula do tipo Markdown).

Selecione a primeira célula e altere seu tipo para Markdown:

Figure 114: Alterando o tipo de célula

Asimov Academy 109

Criando seu Setup para Programação Python

Escreva texto markdown dentro da célula. A linguagem markdown é bastante simples, e requer
formatação mínima para ser exibida de forma elegante. Por exemplo, hashtags (#) são usados para
controlar cabeçalhos, e hífens (-) delimitam listas:

Figure 115: Escrevendo texto em markdown

Ao terminar de editar, execute a célula (símbolo de “Play” no topo do arquivo, ou atalho Shift +
Enter). Você verá o texto markdown renderizado:

Figure 116: Célula markdown renderizada

Asimov Academy 110

Criando seu Setup para Programação Python

Célula Code

Como esperado, você pode escrever e executar código Python nas células de tipo Code.

Crie células desse tipo com comandos de Python (dica: cada vez que você executa uma célula com
Shift + Enter, uma nova célula abaixo já é criada):

Figure 117: Rodando código em células do Jupyter

Asimov Academy 111

Criando seu Setup para Programação Python

Salvando o arquivo do notebook

No topo do arquivo, é possível dar um nome ao seu notebook. A sugestão é dar um nome informativo,
para evitar ficar com diversos notebooks chamados Untitled no seu computador!

Note também que a extensão de um arquivo de notebook.ipynb é diferente de um arquivo Python:

Figure 118: Modificando o nome do notebook

Após salvarmos o notebook, ele pode ser aberto nas IDEs (lembrando que o PyCharm só permite leitura

Asimov Academy 112

Criando seu Setup para Programação Python

de notebooks na versão gratuita):

Figure 119: Abrindo o notebook no VS Code

Na realidade, o arquivo do notebook em si não é código Python, mas sim um arquivo com formatação
similar a JSON:

Asimov Academy 113

Criando seu Setup para Programação Python

Figure 120: O texto bruto de um notebook

Este arquivo pode ser interpretado pelo Jupyter, mas não serve como código-fonte para seus programas
de Python. Quando você for desenvolver um código mais sólido, lembre-se de passar as informações
dentro do Jupyter para um script de Python de verdade, com extensão .py!

JupyterLab

Existe também o JupyterLab, um programa ligeiramente mais avançado para trabalhar com notebooks
de Jupyter. Se pensarmos que os notebooks de Jupyter são equivalentes a um script de Python, então
o JupyterLab seria equivalente a uma IDE.

O JupyterLab já foi instalado anteriormente, quando instalamos o Jupyter. Portanto, precisamos
apenas usar o comando jupyter-lab para iniciar o servidor:

Asimov Academy 114

Criando seu Setup para Programação Python

Figure 121: Rodando o JupyterLab

A interface é similar à dos notebooks padrão, porém há mais opções. Por exemplo, há um explorador
de arquivos completo nos ícones à esquerda:

Figure 122: Explorador de arquivos do JupyterLab

Também é possível editar scripts de Python e notebooks em abas dedicadas, como em uma IDE
tradicional:

Asimov Academy 115

Criando seu Setup para Programação Python

Figure 123: Código e abas do JupyterLab

Sempre que possível, opte por utilizar o JupyterLab, pois possui muito mais funcionalidades que os
notebooks!

Asimov Academy 116

Criando seu Setup para Programação Python

15. Outras opções de IDEs

Abordamos algumas das principais formas de trabalhar com Python, indo desde os terminais mais
básicos aos programas mais avançados.

Dito isso, este curso não consegue abordar todas as formas existentes de rodar Python. Há uma
infinidade de programas e IDEs para diferentes nichos, e novos métodos de execução de Python
surgem a cada mês.

Nesta aula final, vamos ver algumas formas alternativas de executar Python, e qual o público-alvo de
cada uma delas.

Spyder

O Spyder é uma IDE com foco na área científica, que é uma das grandes forças de Python. O Spyder
possui áreas específicas na interface para exibição de gráficos e de variáveis, de forma similar ao
RStudio (para quem conhece a linguagem R).

A forma indicada pelo próprio site do Spyder é a instalação através do Anaconda Navigator.

Asimov Academy 117

Criando seu Setup para Programação Python

Figure 124: Página de apresentação da IDE Spyder

Google Colab

O Google Colab é uma forma de escrever notebooks de Jupyter que não ficam salvos no seu computa-
dor.

O ambiente de Python fica nos servidores do Google, e os notebooks gerados podem ser compartilha-
dos facilmente e integrados com outras ferramentas do Google, como o Google Drive.

O serviço é gratuito para os níveis mais básicos, mas dependendo da sua necessidade (processamento
com servidores de alto desempenho, ou análise de dados de larga escala), pode ser necessário pagar
por ele.

Asimov Academy 118

Criando seu Setup para Programação Python

Figure 125: Página de apresentação do Google Colab

Asimov Academy 119

Criando seu Setup para Programação Python

Figure 126: Notebook introdutório do Google Colab

PythonAnywhere

É um serviço de execução de Python na nuvem, oferecido pela Anaconda, a mesma empresa do
Anaconda Navigator. Simplifica o gerenciamento do ambiente de Python e permite hospedagem de
aplicativos ou qualquer outro tipo de código.

Assim como o Google Colab, oferece planos pagos de acordo com as necessidades de hospedagem e
poder de processamento.

Asimov Academy 120

Criando seu Setup para Programação Python

Figure 127: Página de apresentação do PythonAnywhere

Mu

É uma IDE simplificada, como foco na facilidade de uso para iniciantes em Python. Ela vem embutida
de uma instalação completa de Python, e portanto não requer que Python já esteja instalado no
sistema.

Os alunos do curso Aprendendo Python: Conceitos Básicos da Asimov Academy certamente estão
familiarizados com ela!

Asimov Academy 121

Criando seu Setup para Programação Python

Figure 128: Página de apresentação da IDE Mu

Asimov Academy 122

Criando seu Setup para Programação Python

16. O que é um ambiente virtual?

Antes de aprender como utilizar um ambiente virtual em Python, é importante entender para que ele
serve e por que ele é necessário.

Imagine que você tem o Python 3.12 instalado em seu computador e deseja trabalhar em um projeto
utilizando essa versão. Você instala a biblioteca Pandas, que, na época, está na versão 1.5.0. Seu
projeto (Projeto A) é desenvolvido com sucesso utilizando essa versão.

Meses ou anos depois, um amigo compartilha um novo projeto Python com você (Projeto B). Esse
projeto também utiliza a biblioteca Pandas, mas em uma versão mais recente, 2.2.1.

Ao tentar rodar o Projeto B, você percebe que o código não funciona corretamente porque a versão do
Pandas é diferente. Para corrigir isso, você pode atualizar a biblioteca com o comando:

pip install --upgrade pandas

No entanto, ao atualizar o Pandas para rodar o Projeto B, você acaba quebrando o Projeto A, pois ele
foi desenvolvido para funcionar com a versão 1.5.0. Isso cria um problema: como manter diferentes
versões de bibliotecas para diferentes projetos sem conflitos?

A Solução: Ambientes Virtuais

A solução para esse problema é o uso de ambientes virtuais. Os ambientes virtuais (ou venvs, como
são comumente chamados) permitem que você crie instalações isoladas do Python para cada projeto,
evitando conflitos de dependências.

Cada ambiente virtual funciona como uma cópia independente da instalação do Python. Dentro desse
ambiente, você pode instalar pacotes específicos sem interferir em outros projetos.

Assim, você pode ter:

• Um ambiente virtual para o Projeto A, rodando Python 3.12 e Pandas 1.5.0.

• Um ambiente virtual para o Projeto B, rodando Python 3.12 e Pandas 2.2.1.

• Outros ambientes para diferentes projetos, cada um com suas próprias dependências.

Isso garante que cada projeto funcione corretamente sem afetar os outros.

Benefícios dos Ambientes Virtuais

• Isolamento de dependências: Cada projeto possui suas próprias versões de bibliotecas.

Asimov Academy 123

Criando seu Setup para Programação Python

• Facilidade de reprodução: Outras pessoas podem recriar o mesmo ambiente e rodar o código
sem problemas.

• Organização: Mantém a instalação global do Python limpa e evita conflitos.

Conclusão

Os ambientes virtuais são uma ferramenta essencial para o desenvolvimento em Python, garantindo
que cada projeto tenha um conjunto de dependências bem definido e isolado.

Na próxima aula, vamos aprender como criar e gerenciar esses ambientes virtuais na prática!

Asimov Academy 124

Criando seu Setup para Programação Python

17 - Criando e Ativando seu Ambiente Virtual

Agora que compreendemos a importância dos ambientes virtuais e suas funcionalidades, vamos
aprender na prática como criar e ativar um ambiente virtual para organizar nossas dependências de
projeto.

Criando o Ambiente Virtual

Estrutura Inicial

Primeiramente, criaremos uma estrutura de diretórios para organizar nossos projetos. Vamos criar
uma pasta chamada “meus_projetos” e, dentro dela, duas subpastas: “projeto_A” e “projeto_B”.

Criando um Ambiente Virtual para o Projeto A

1. Abra o terminal (CMD no Windows ou terminal no macOS/Linux).

2. Navegue até a pasta do projeto:

Windows:
cd Desktop\meus_projetos\projeto_A

Linux / MacOS
cd Desktop/meus_projetos/projeto_A

• Verifique a versão do Python instalada:

• No windows:
where python

• No Linux / MacOS
which python

3. Confirme a versão do Python:
python --version

4. Liste os pacotes instalados globalmente:
pip list

5. Crie o ambiente virtual:
python -m venv venv-projeto-A

Isso criará uma pasta chamada venv-projeto-A, que conterá os arquivos do ambiente virtual.

Asimov Academy 125

Criando seu Setup para Programação Python

Ativando o Ambiente Virtual

Para ativar o ambiente virtual:

• No Windows (CMD ou PowerShell):

venv-projeto-A\Scripts\activate

• No macOS/Linux:

source venv-projeto-A/bin/activate

Quando ativado, o nome do ambiente virtual aparecerá no início do prompt do terminal, indicando
que ele está ativo.

Conferindo a Instalação

Verifique a instalação do Python dentro do ambiente virtual:

where python # Windows
which python # macOS/Linux

Liste os pacotes instalados:

pip list

Agora, qualquer instalação de pacotes com pip install será feita exclusivamente dentro do ambiente
virtual.

Instalando Dependências no Ambiente Virtual

Vamos instalar o Pandas como exemplo:

pip install pandas

Verifique a instalação:

pip list

Os pacotes instalados estão contidos dentro do ambiente virtual e não afetam o sistema global.

Criando um Ambiente Virtual para o Projeto B

Agora, vamos repetir o processo para o projeto B:

1. Navegue até a pasta do projeto B:

Asimov Academy 126

Criando seu Setup para Programação Python

cd ../projeto_B #Linux / MacOS
cd..\projeto_B #Windows

2. Crie o ambiente virtual:

python -m venv venv-projeto-B

3. Ative o ambiente virtual:

venv-projeto-B\Scripts\activate # Windows
source venv-projeto-B/bin/activate # macOS/Linux

4. Instale uma versão específica do Pandas:

pip install pandas==1.5.0

Gerenciando Dependências com requirements.txt

Para facilitar a instalação de pacotes em outro ambiente, podemos gerar um arquivo requirements.txt
com todas as dependências:

pip freeze > requirements.txt

Esse arquivo conterá a lista de pacotes e versões necessárias para o projeto.

Para instalar as dependências em outro ambiente virtual, basta executar:

pip install -r requirements.txt

Desativando o Ambiente Virtual

Para desativar o ambiente virtual, utilize:

deactivate

Com isso, o terminal volta ao ambiente global do sistema.

Conclusão

Aprendemos a criar e ativar ambientes virtuais, instalar dependências e gerenciá-las com o
requirements.txt. Essa prática é essencial para manter projetos organizados e evitar conflitos
de versões de bibliotecas.

Agora que entendemos como trabalhar com ambientes virtuais, seguimos para a próxima aula!

Asimov Academy 127

Criando seu Setup para Programação Python

18. Selecionando o Interpretador de Python nas IDEs

Introdução

Uma das principais dúvidas de quem começa a programar em Python está relacionada à escolha do
interpretador correto dentro das IDEs. Muitas vezes, os usuários instalam bibliotecas como o pandas,
mas, ao executar o código na IDE, encontram erros informando que o módulo não foi encontrado.
Isso ocorre porque a IDE pode estar rodando um interpretador diferente daquele onde a biblioteca
foi instalada. Nesta aula, vamos aprender a selecionar o interpretador adequado no VS Code e no
PyCharm.

Selecionando o Interpretador no VS Code

1. Abrindo o projeto

• No VS Code, clique em File > Open Folder e selecione a pasta do seu projeto.

• Exemplo: Vamos abrir a pasta do projeto B.

2. Criando um novo script

• Crie um novo arquivo Python chamado meu_script.py.

• No arquivo, escreva o seguinte código:
import pandas as pd
print(pd.__version__)

• Salve o arquivo e tente executá-lo.

3. Identificando o problema

Asimov Academy 128

Criando seu Setup para Programação Python

Figure 129: erro no interpretador

• Se a execução resultar em um erro ModuleNotFoundError: No module named
'pandas', significa que o interpretador atual do VS Code não está apontando para o
ambiente correto.

4. Selecionando o interpretador correto

• No canto inferior direito da tela, verifique o caminho do interpretador de Python em uso.

Figure 130: Localização interpretador

Asimov Academy 129

Criando seu Setup para Programação Python

Figure 131: Localização interpretador

Clique nele para abrir a lista de interpretadores disponíveis.

• Selecione a opção correspondente ao ambiente virtual do projeto (geralmente localizado
em venv\Scripts\python.exe).

Figure 132: Seleção do interpretador

• Caso o interpretador correto não apareça, clique em Enter interpreter path...
e navegue até o executável correto.

5. Executando o script novamente

• Agora que o interpretador correto foi selecionado, rode o script novamente e veja se a
biblioteca está funcionando corretamente.

Selecionando o Interpretador no PyCharm

6. Abrindo o projeto

Asimov Academy 130

Criando seu Setup para Programação Python

• No PyCharm, clique em File > Open e selecione a pasta do projeto.

• Exemplo: Vamos abrir a pasta do projeto A.

• Confirme que confia no projeto quando solicitado.

7. Criando um novo script

• Crie um novo arquivo Python chamado meu_script.py.

• Adicione o seguinte código:
import pandas as pd
print(pd.__version__)

• Salve e execute o arquivo.

8. Verificando o interpretador

• No PyCharm, o interpretador padrão pode ser identificado no canto inferior direito da tela.

• Se o interpretador correto já estiver selecionado, a execução ocorrerá sem problemas.

9. Alterando o interpretador

• Clique no interpretador no canto inferior direito e selecione Add Interpreter.

• Escolha Virtualenv Environment e selecione o caminho correto para o
python.exe dentro do diretório venv do projeto.

• Outras opções incluem usar um interpretador global ou um ambiente conda se disponível.

10. Executando o script novamente

• Agora, com o interpretador correto, execute o script novamente e confira se a biblioteca
está funcionando corretamente.

Conclusão

Selecionar corretamente o interpretador de Python dentro das IDEs é essencial para evitar erros de
importação de módulos. Tanto no VS Code quanto no PyCharm, o processo é simples, mas requer
atenção aos detalhes. Sempre que encontrar um erro de ModuleNotFoundError, verifique se sua
IDE está usando o interpretador correto.

Agora que entendemos esse processo, nas próximas aulas abordaremos outras questões relacionadas
à importação de códigos para facilitar ainda mais o seu trabalho com Python. Vamos para a próxima
aula!

Asimov Academy 131

Criando seu Setup para Programação Python

19. Importando arquivos com código – a variável name

Nesta aula, vamos abordar um conceito essencial para a estruturação de projetos Python: a variável
__name__. O objetivo é entender como evitar problemas ao importar arquivos e como controlar a
execução de códigos dentro de diferentes scripts.

O problema da importação de scripts

Imagine que temos dois scripts Python dentro de um mesmo projeto:

• script_b.py:

x = 1
print(x)

• script_a.py:

from script_b import x
print(f"O valor de x é: {x}")

Se rodarmos o script_b.py, o resultado será:

1

Porém, se rodarmos o script_a.py, a saída será:

1
O valor de x é: 1

Por que isso acontece? Ao importarxdescript_b.py, o Python executa todo o conteúdo do arquivo
importado, inclusive a linha print(x). Isso pode ser problemático em projetos maiores.

A solução: Usando __name__

Para evitar a execução de comandos desnecessários ao importar um arquivo, usamos a variável
__name__. O Python define automaticamente essa variável para cada arquivo executado:

• Se o script for executado diretamente, __name__ será igual a "__main__".

• Se o script for importado, __name__ conterá o nome do arquivo.

Podemos modificar script_b.py para evitar a execução indesejada:

x = 1

def main():
print(x)

Asimov Academy 132

Criando seu Setup para Programação Python

if __name__ == "__main__":
main()

Agora, ao rodarmos script_b.py, teremos:

1

E ao rodarmos script_a.py, a saída será apenas:

O valor de x é: 1

O bloco if __name__ == "__main__" impede que o print(x) seja executado quando
script_b.py for importado, mantendo o código mais organizado e controlado.

Conclusão

A variável __name__ é um mecanismo fundamental para diferenciar códigos que devem ser exe-
cutados diretamente ou apenas quando importados. Isso evita execuções indesejadas e melhora a
modularidade do seu projeto Python.

Agora que você compreende esse conceito, podemos partir para desafios mais complexos na próxima
aula!

Asimov Academy 133

Criando seu Setup para Programação Python

20. Estrutura do projeto e erros de importação

Quando estamos trabalhando com projetos mais complexos em Python, com várias pastas, subpastas
e módulos, é comum enfrentar problemas relacionados a importações de pacotes e funções. Este
capítulo visa explicar como organizar um projeto grande de Python de maneira eficiente e como
solucionar problemas de importação que podem surgir, principalmente quando lidamos com pacotes
e módulos em diferentes níveis de pastas.

Neste exemplo, vamos explorar uma situação em que temos um projeto com um pacote e diversos
módulos, e como configurar o ambiente de forma que as importações funcionem corretamente em
diferentes contextos.

Estrutura do Projeto

1. Criando a Estrutura do Projeto

Vamos criar uma estrutura de projeto que inclui um ambiente virtual e um pacote. A estrutura
inicial do nosso projeto será a seguinte:

Figure 133: Estrutura das pastas

No VScode, a estrutura deve ser mais ou menos essa aqui:

Asimov Academy 134

Criando seu Setup para Programação Python

Figure 134: Estrutura das pastas

Dentro de cada módulo (A, B e C), teremos simples variáveis com valores numéricos. Aqui está um
exemplo de como seria o modulo_a.py:

varA = 1

A ideia é que, em um projeto real, esses módulos teriam funcionalidades mais complexas.

2. Criando o Script Principal

No arquivo principal, vamos importar essas variáveis dos módulos e somá-las para verificar se as
importações estão funcionando corretamente.

from meu_pacote.modulo_a import varA
from meu_pacote.modulo_b import varB
from meu_pacote.modulo_c import varC

def func():
return varA + varB + varC

if __name__ == "__main__":
print("Testando a função:", func())

Esse código deve funcionar sem problemas, desde que as importações estejam corretamente configu-
radas dentro da estrutura do projeto.

Problema Comum de Importação

1. Criando o Script main.py

Quando você tenta criar um script principal (main.py) fora do pacote, você pode encontrar um
erro de importação, já que o Python não consegue encontrar o módulo a partir da estrutura de

Asimov Academy 135

Criando seu Setup para Programação Python

pastas. Isso ocorre porque o main.py está em um nível de diretório diferente e o Python tenta
importar os módulos a partir do diretório atual.

Por exemplo, ao tentar rodar:
from meu_pacote.modulo_a import varA

O Python pode não encontrar o meu_pacote se ele não estiver configurado corretamente.

2. Solução Temporária

Uma forma de contornar esse problema seria adicionar a importação completa:
from my_project.meu_pacote.modulo_a import varA

Isso faz com que o Python encontre o módulo corretamente. No entanto, isso cria um novo problema,
pois agora, ao rodar o código dentro do pacote, as importações não funcionarão mais corretamente.

Solução Definitiva: Instalar o Projeto no Ambiente Virtual

A maneira correta de resolver esse problema é instalar o próprio projeto dentro do ambiente virtual.
Isso permitirá que o Python encontre os pacotes e módulos independentemente de onde o script está
sendo executado.

Para isso, vamos adicionar o arquivo __init__.py ao diretório do pacote e configurar o projeto com
a biblioteca setuptools.

• Crie o arquivo __init__.py dentro do diretório meu_pacote para indicar ao Python que
essa pasta é um pacote.

• Instale o setuptools no ambiente virtual:
pip install setuptools

• Crie um arquivo setup.py na raiz do projeto para configurar o pacote:
from setuptools import setup, find_packages

setup(
name="myproject",
packages=find_packages(),

)

Agora, execute o comando para instalar o projeto de forma que o Python consiga importar os pacotes
corretamente:
pip install -e .

Isso instala o projeto no ambiente virtual de forma editável, permitindo que você faça alterações no
código e as veja refletidas imediatamente.

Asimov Academy 136

Criando seu Setup para Programação Python

Conclusão

O processo de importar pacotes em projetos grandes de Python pode gerar erros, especialmente
quando há uma estrutura de pastas complexa. A solução para evitar esses problemas é instalar o
projeto dentro do ambiente virtual, o que garante que as importações sejam feitas sempre a partir da
raiz do projeto.

Além disso, utilizar a bibliotecasetuptools e o arquivosetup.py ajuda a configurar corretamente
o ambiente para importação consistente, independentemente do local onde o script esteja sendo
executado.

Agora, com essa configuração, as importações funcionarão corretamente, não importa onde o código
seja executado dentro do projeto.

Asimov Academy 137

	01. O que você vai aprender
	O que motivou este curso?
	Como o curso está estruturado?

	02. O que é um terminal?
	A história de um terminal
	Terminais nos computadores modernos
	Nomenclatura de terminais
	A linguagem dos terminais

	03. O terminal do Windows
	Comandos básicos
	Rodando programas pelo terminal
	Variáveis de ambiente

	04 Instalando Python no Windows
	Instalação do Python
	Verificando sua instalação
	Onde Python foi instalado?
	Instalando dependências

	Rodando scripts de Python

	05. O terminal do Mac
	Caminhos em sistemas UNIX
	Comandos básicos
	Executáveis e as variáveis de ambiente
	Python em Mac

	06. Instalando Python no Mac
	Verificando sua instalação
	Onde Python foi instalado?
	Instalando dependências
	Rodando scripts de Python

	07. O terminal do Linux
	Caminhos em sistemas UNIX
	Comandos básicos
	Executáveis e as variáveis de ambiente
	Python em Linux

	08. Instalando Python no Linux
	Como instalar Python pelo código-fonte
	Baixando e extraindo código-fonte
	Instalando as dependências de compilação
	Compilando Python
	Opções de instalação

	Verificando sua instalação
	Instalando dependências
	Rodando scripts de Python

	09. Outras opções de instalação
	Instalando Anaconda
	Anaconda Navigator
	Devo usar o Anaconda?

	10. O que são IDEs?
	Interface de uma IDE

	11. Instalando e configurando o VS Code
	Instalação
	Uso básico do VS Code
	Configuração para código Python
	Depuração de código
	Qual Python o VS Code está usando?
	Configurações adicionais

	12. Instalando e configurando o PyCharm
	Instalação
	Criando um projeto no PyCharm
	Uso básico do PyCharm
	Configurações diversas do PyCharm

	13. O console do IPython
	Comandos mágicos de IPython
	IPython nas IDEs

	14. Jupyter Notebook e Jupyter Lab
	Os notebooks de Jupyter
	Como o Jupyter funciona

	Criando e usando um notebook do Jupyter
	Célula Markdown
	Célula Code
	Salvando o arquivo do notebook

	JupyterLab

	15. Outras opções de IDEs
	Spyder
	Google Colab
	PythonAnywhere
	Mu

	16. O que é um ambiente virtual?
	A Solução: Ambientes Virtuais
	Benefícios dos Ambientes Virtuais
	Conclusão

	17 - Criando e Ativando seu Ambiente Virtual
	Criando o Ambiente Virtual
	Estrutura Inicial
	Criando um Ambiente Virtual para o Projeto A

	Ativando o Ambiente Virtual
	Conferindo a Instalação

	Instalando Dependências no Ambiente Virtual
	Criando um Ambiente Virtual para o Projeto B
	Gerenciando Dependências com requirements.txt
	Desativando o Ambiente Virtual
	Conclusão

	18. Selecionando o Interpretador de Python nas IDEs
	Introdução
	Selecionando o Interpretador no VS Code
	Selecionando o Interpretador no PyCharm
	Conclusão

	19. Importando arquivos com código – a variável name
	O problema da importação de scripts
	A solução: Usando __name__
	Conclusão

	20. Estrutura do projeto e erros de importação
	Estrutura do Projeto
	Problema Comum de Importação
	Solução Definitiva: Instalar o Projeto no Ambiente Virtual
	Conclusão

