
 



________________________________________ 

 

2 

 

Tecnologia da Informação 

TEORIA 

SQL (DML) 
 

 

SUMÁRIO 
 

DIRETIVAS DA AULA ............................................................................................................... 4 

GLOSSÁRIO DE TERMOS ........................................................................................................ 6 

1. INTRODUÇÃO AO SQL .................................................................................................... 7 

2. SQL (DML) ........................................................................................................................ 12 

2.1 DML: instrução SELECT .............................................................................................. 12 

2.1.1 Sintaxe básica do SELECT ............................................................................................ 12 

2.1.2 Definição de alias ........................................................................................................... 34 

2.1.3 Ordenação com SELECT ............................................................................................... 36 

2.1.4 Funções de agregação .................................................................................................... 40 

2.1.5 Agrupamentos com SELECT ........................................................................................ 47 

2.1.6 Produto Cartesiano ........................................................................................................ 52 

2.1.7 Junções (joins) ................................................................................................................ 55 

2.1.8 Operadores de conjuntos ................................................................................................ 70 

2.1.9 Consultas aninhadas ....................................................................................................... 77 

2.1.10 Cláusulas especiais ..................................................................................................... 90 

2.2 DML: instrução DELETE ............................................................................................. 95 

2.3 DML: instrução UPDATE ............................................................................................ 97 

2.4 DML: instrução INSERT INTO ................................................................................. 100 

3. LÓGICA DE TRÊS ESTADOS ...................................................................................... 102 

4. ESQUEMAS DE AULA .................................................................................................. 104 

5. MAPA MENTAL ............................................................................................................ 111 

6. CHEAT SHEET (FOLHA DE CÓDIGO) ...................................................................... 112 

7. REFERÊNCIAS .............................................................................................................. 113 

 

  

  



________________________________________ 

 

3 

A nossa aula é bem esquematizada, então para facilitar o seu acesso aos esquemas, você 
pode usar o seguinte índice:  

Esquema 1 – Linguagem SQL e subdivisões. ...................................................................................... 8 
Esquema 2 – Sintaxe básica da instrução SELECT. ........................................................................... 14 
Esquema 3 – Condições na cláusula WHERE. .................................................................................. 15 
Esquema 4 – Operador LIKE e exemplos. ....................................................................................... 21 
Esquema 5 – Cláusulas para definir mais de uma condição e negação de condição. .............................................. 29 
Esquema 6 – Instrução SELECT. .............................................................................................. 33 
Esquema 7 – Atribuição de alias. ................................................................................................ 35 
Esquema 8 – Cláusula ORDER BY. ........................................................................................... 37 
Esquema 9 – Funções de agregação. ............................................................................................. 40 
Esquema 10 – Cláusula GROUP BY e HAVING. ............................................................................. 48 
Esquema 11 – Produto Cartesiano. ............................................................................................. 53 
Esquema 12 – Tipos de JOIN. .................................................................................................. 55 
Esquema 13 – Operadores de conjuntos. ......................................................................................... 74 
Esquema 14 – Consultas aninhadas. ............................................................................................ 84 
Esquema 15 - Cláusulas especiais. ............................................................................................... 94 
Esquema 16 – Sintaxe básica da instrução DELETE. ......................................................................... 95 
Esquema 17 – Sintaxe básica da instrução UPDATE. ......................................................................... 98 
Esquema 18 – Sintaxe básica da instrução INSERT INTO. ................................................................. 101 
Esquema 19 - Lógica de três estados. .......................................................................................... 102 
 

  



________________________________________ 

 

4 

 

DIRETIVAS DA AULA 
 

Esta aula aborda um dos temas mais importantes para concursos de Tecnologia da 
Informação: a linguagem SQL.  

Inicialmente, abordaremos as sublinguagens que compõem a SQL, como DDL, DML, DCL 
e DTL e os principais comandos de cada uma delas. Essa é uma parte mais direta, mas 
importantíssima, pois várias questões requerem apenas que você saiba diferenciar essas 
sublinguagens e identificar a qual delas pertence algum comando. 

Em seguida abordamos a DML em detalhes, iniciando pela sintaxe básica de uma consulta 
com SELECT. Fique bastante atento as cláusulas que são usadas e na ordem em que elas 
são declaradas nos comandos. 

Nos tópicos seguintes abordamos a definição de alias, a ordenação de resultados e as funções 
de agregação, bem como o agrupamento de resultados. Até esse tópico trabalhamos a 
sintaxe com base em uma tabela. As questões mais simples e diretas cobram até essa parte 
da aula. 

Evoluindo no entendimento da sintaxe, passamos a estudar as operações que permitem unir 
tabelas como o produto cartesiano e as operações de junções. Fique muito atento na 
diferença dos retornos dos tipos de join, pois as bancas exploram bastante. 

Após, abordamos os operadores de conjuntos que servem para operar mais de uma consulta. 

Depois, entramos nas chamadas consultas aninhadas, que são consultas dentro de outras. 
Essa é provavelmente a parte mais complexa da aula e requer bastante atenção para o 
entendimento.  

Para finalizar o SELECT, abordamos algumas cláusulas especiais que vez por outra caem 
em alguma questão. “Passe o olho” na sintaxe básica dessas cláusulas. 

Continuando a DML, abordamos as cláusulas DELETE, UPDATE e INSERT. Tratamos 
apenas da sintaxe básica delas, mas tenha em mente que praticamente tudo que foi estudado 
para DML, se aplica a esses comandos também. 

Para fechar a aula, resumimos a lógica de três estados que trabalha com os valores TRUE, 
FALSE e UNKNOWN. Montamos a tabela verdade para essas operações. Você precisa ter 
noção de como são os resultados de operações envolvendo esses três valores. 

 

  



________________________________________ 

 

5 

ORIENTAÇÕES ESPECIAIS PARA AS BANCAS 

CEBRASPE 

A banca CEBRASPE costuma trazer questões mais diretas e pontuais. Há muitas questões 
conceituais sobre as definições e funções das cláusulas. Mesmo nas questões com código, 
geralmente são códigos bem mais curtos do que os trazidos em outras bancas e que 
questionam sobre cláusulas bem específicas. 

 

FCC 

A FCC costuma abordar o tema dando opções de código para serem avaliadas. 
Normalmente, dentre os itens há pelo menos três com sintaxe errada, então se você 
conhecer bem as sintaxes, já conseguirá eliminar os itens e chegar mais próximo das 
respostas corretas.  

 

FGV 

A banca FGV costuma ir um pouco além na cobrança desses conteúdos, focando bastante 
na análise dos resultados de códigos e no número de linhas retornadas. Para essa banca, 
você precisará treinar bastante a sua capacidade de raciocínio e velocidade de resolução. 

Inclusive essa banca possui uma cláusula queridinha: EXISTS. Então, preste bastante 
atenção no tópico 2.1.9 que trata das consultas aninhadas. Além disso, atenção também a 
como realizar contagem de linhas nos joins (item 2.1.7). 

 

VUNESP 

A banca VUNESP aborda SQL de forma teórico-conceitual, mas também apresenta 
questões práticas sobre os comandos principais. Tenha atenção especial aos joins e funções 
de agregação.  



________________________________________ 

 

6 

 

GLOSSÁRIO DE TERMOS 
 

Atributo ou campo: coluna de uma tabela no modelo relacional. 

Alias: apelido para uma coluna ou tabela. 

Cláusula: palavra chave ou termo utilizado em uma linguagem para compor um comando. 
Ex.: SELECT, WHERE, IN. 

Consulta aninhada ou subconsulta: uma consulta interna a outra. 

Consulta externa: uma consulta que possui subconsulta. 

Expressão booleana: expressão que pode ser avaliada em verdadeiro ou falso. 

Função de agregação: usadas para resumir informações de várias tuplas em uma síntese 
de tupla única. 

Linguagem declarativa: expressa a lógica do cálculo sem descrever o fluxo de controle. 

Linguagem não declarativa ou procedural: expressa o procedimento para o acesso aos 
dados. 

Join: junção em inglês.  

NULL: representa vazio ou ausência de valor. 

Query: consulta em inglês. 

Registros ou tuplas: linhas de uma tabela no modelo relacional. 

Storage: armazenamento em inglês. 

SQL (Structured Query Language – Linguagem de Consulta Estruturada): linguagem 
de consulta padrão para acesso e manipulação em bancos de dados relacionais. 

 

  



________________________________________ 

 

7 

 

1. INTRODUÇÃO AO SQL 
 

A linguagem SQL (Structured Query Language – Linguagem de Consulta 
Estruturada) é a linguagem padrão para acesso e manipulação de bancos de dados. 
Por ser um padrão, ela foi um dos principais motivos para o sucesso dos bancos de dados 
comerciais, pois os usuários possuem liberdade para alternar entre os SGBDs, sem ter que 
mudar os códigos SQL. A padronização foi realizada pelo American National Standarts 
Institute (ANSI) e, por isso, a linguagem padrão é chamada SQL/ANSI. Contudo, vale 
mencionar que existem diferentes versões da linguagem SQL que fogem um pouco do 
padrão implementadas por cada SGBD. 

Uma das principais características da linguagem SQL é que ela é declarativa ou não 
procedural. Uma linguagem declarativa expressa a lógica de um cálculo sem descrever seu 
fluxo de controle, ou ainda, uma linguagem em que apenas são declarados os dados que 
precisam ser acessados, sem necessidade de especificar como obter esses dados. A 
linguagem declarativa é oposta a uma linguagem procedural em que se precisa informar 
como obter os dados também, além dos dados desejados. 

A linguagem SQL possui comandos para acesso e manipulação dos dados, mas também 
para a criação, exclusão e alteração das tabelas, índices e demais estruturas de bancos de 
dados, além de comandos para controlar os dados e transações. Dada essa amplitude, 
geralmente se fala em subdivisões da linguagem, geralmente tratando-se dos seguintes 
subgrupos: 

§ DML (Data Manipulation Language): utilizado para realizar consultas, 
inclusões, alterações e exclusões de dados presentes em registros. Estas 
tarefas podem ser executadas em vários registros de diversas tabelas ao mesmo 
tempo. Os comandos que realizam respectivamente as funções referidas são 
SELECT, INSERT, UPDATE e DELETE. 
 

o DQL (Data Query Language): por vezes, o comando SELECT é dito 
como integrante da DQL e permite ao usuário especificar uma consulta 
("query") como uma descrição do resultado desejado. Esse comando 
é composto de várias cláusulas e opções, possibilitando elaborar 
consultas das mais simples às mais elaboradas. 

 

§ DDL (Data Definition Language): permite ao utilizador definir tabelas 
novas e elementos associados. Os comandos desta linguagem são CREATE, 
ALTER e DROP, além do comando TRUNCATE. 
 

o VDL (View Definition Language): há autores que falam em uma 
linguagem específica para a definição de visões. 
 

o SDL (Storage Definition Language): há autores que falam em uma 
linguagem específica para a definição do armazenamento ou 
especificação do esquema interno. 



________________________________________ 

 

8 

§ DCL (Data Control Language): controla os aspectos de autorização de dados 
e licenças de usuários para controlar quem tem acesso para ver ou manipular 
dados dentro do banco de dados. Inclui os comandos GRANT e REVOKE, 
além do comando DENY. 

 
§ DTL (Data Transaction Language): linguagem para tratar as transações. Os 

principais comandos desta linguagem são COMMIT e o ROLLBACK, além do 
START TRANSACTION (ou BEGIN) e do SAVEPOINT. 
 

Esquematizando: 

 

Esquema 1 – Linguagem SQL e subdivisões. 

 

 

DICA DO PROFESSOR!!! 

Se você souber para que servem as subdivisões e quais comandos estão em cada uma 
delas, já irá acertar algumas questões sobre esse assunto ou, pelo menos, eliminar alguns 
itens em questões de múltipla escolha.  
 
 
 

SQL

DML

Manipulação 
de dados

SELECT

INSERT

UPDATE

DELETE

DQL

Somente o 
SELECT

DDL

Definir 
tabelas e 

elementos 
associados

CREATE

ALTER

DROP

TRUNCATE

VDL

Específica 
para visões

SDL

Específica para 
armazenamento

DCL

Controlar o 
acesso aos 

dados

GRANT

REVOKE

DENY

DTL

Tratar as 
transações

BEGIN 
OU START 

TRANSACTION

COMMIT

ROLLBACK

SAVEPOINT



________________________________________ 

 

9 

EXEMPLIFICANDO!!!  

A seguir temos um comando simples em SQL. 
 

SELECT codigo, nome FROM cliente  

ORDER BY nome DESC  

 
Basicamente, esse comando declara que devem ser retornados códigos e nomes de todos os 
clientes, apresentados por ordem decrescente de nome. Não se preocupe em entender a 
sintaxe agora, pois vamos estudar os elementos necessários para você compreender os 
comandos que podem cair na sua prova. 
 
 

1- (CESPE / CEBRASPE - 2024 – FINEP - Analista) Considerando-se que 
determinada empresa possui vários tipos de banco de dados para armazenamentos de dados 
estruturais, é correto afirmar que a linguagem SQL, nesse caso, tem a finalidade de 

a) desenvolver aplicações baseadas na linguagem Java. 

b) realizar cálculos matemáticos simples e complexos. 

c) gerenciar sistemas operacionais. 

d) desenvolver aplicativos para dispositivos móveis. 

e) manipular dados em banco de dados. 

Resolução:  

Vamos analisar cada um dos itens: 

a) Incorreto: SQL não é uma linguagem de desenvolvimento de aplicações em Java ou em 
qualquer outra linguagem de programação. As aplicações desenvolvidas em Java (ou em 
outra linguagem) costumam interagir com SQL para acesso e manipulação dos dados.  

b) Incorreto: embora seja possível realizar cálculos simples com SQL, sua finalidade 
principal não é realizar cálculos matemáticos, mas sim manipular dados em banco de dados. 
Cálculos mais complexos são geralmente realizados por linguagens de programação que 
interagem com SQL. 

c) Incorreto: SQL não tem nenhuma relação com o gerenciamento de sistemas 
operacionais. Ela é usada para gerenciar dados em sistemas de banco de dados. 

d) Incorreto: SQL não é uma linguagem para desenvolver aplicativos para dispositivos 
móveis ou para qualquer outra plataforma. Ela é usada para acesso e manipulação dos dados. 
Para desenvolver os aplicativos, são usadas linguagem de programação. 

e) Correto: a linguagem SQL (Structured Query Language – Linguagem de Consulta 
Estruturada) é a linguagem padrão para acesso e manipulação de bancos de dados. 

Gabarito: Letra E. 

 



________________________________________ 

 

10 

2- (CESPE / CEBRASPE - 2024 – CTI - Tecnologista Júnior) Considerando as 
linguagens e os fundamentos de bancos de dados relacionais, julgue o item subsequente.  

No DML (data manipulation language), a instrução TRUNCATE elimina todas as linhas 
de uma tabela simultaneamente, enquanto a instrução DELETE oferece a possibilidade de 
excluir dados específicos ou todos os dados. 

Resolução:  

As descrições dos comandos estão corretas, porém TRUNCATE é um comando da DDL e 
não da DML. Os comandos são esquematizados a seguir conforme as subdivisões SQL: 

 

Gabarito: Errado. 

 

3- (FGV - 2024 – Câmara Municipal de Fortaleza – Analista Legislativo) No 
contexto das linguagens de manipulação de dados, relacione as linguagens com seus 
respectivos comandos: 

1. DDL 

2. DML 

3. DQL 

4. DTL 

5. DCL 

(  ) GRANT 

(  ) TRANSACTION 

(  ) SELECT 

(  ) INSERT 

(  ) DROP 

SQL

DML

Manipulação 
de dados

SELECT

INSERT

UPDATE

DELETE

DQL

Somente o 
SELECT

DDL

Definir tabelas 
e elementos 
associados

CREATE

ALTER

DROP

TRUNCATE

VDL

Específica para 
visões

SDL

Específica para 
armazenamento

DCL

Controlar o 
acesso aos 

dados

GRANT

REVOKE

DENY

DTL

Tratar as 
transações

START 
TRANSACTION ou 

BEGIN

COMMIT

ROLLBACK

SAVEPOINT



________________________________________ 

 

11 

Assinale a opção que indica a relação correta na ordem apresentada. 

a) 1 – 2 – 3 – 4 – 5. 

b) 2 – 1 – 5 – 3 – 4. 

c) 3 – 4 – 1 – 5 – 2. 

d) 4 – 3 – 2 – 1 – 5. 

e) 5 – 4 – 3 – 2 – 1. 

Resolução:  

Os comandos são esquematizados a seguir conforme as subdivisões SQL: 

 

Logo, podemos associar corretamente como: 

(5-DCL) GRANT 

(4-DTL) TRANSACTION 

(3-DQL ou 2-DML) SELECT 

(2-DML) INSERT 

(1-DDL) DROP 

Gabarito: Letra E. 

 

  

SQL

DML

Manipulação 
de dados

SELECT

INSERT

UPDATE

DELETE

DQL

Somente o 
SELECT

DDL

Definir tabelas 
e elementos 
associados

CREATE

ALTER

DROP

TRUNCATE

VDL

Específica para 
visões

SDL

Específica para 
armazenamento

DCL

Controlar o 
acesso aos 

dados

GRANT

REVOKE

DENY

DTL

Tratar as 
transações

START 
TRANSACTION ou 

BEGIN

COMMIT

ROLLBACK

SAVEPOINT



________________________________________ 

 

12 

 

2. SQL (DML) 
 

2.1 DML: instrução SELECT 

2.1.1 Sintaxe básica do SELECT 

A instrução básica para recuperar informações de um banco de dados é a instrução 
SELECT. É importante ressaltar que esta instrução não realiza a mesma função que a 
operação de SELEÇÃO da álgebra relacional, mas sim a função da operação de 
PROJEÇÃO, pois após o SELECT são informadas as colunas que se deseja retornar. 

A sintaxe básica de uma instrução SELECT é da seguinte forma: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição; 

Esse comando permite recuperar os valores das colunas de uma tabela que cumprem uma 
determinada condição. A cláusula WHERE realiza a mesma função da operação de 
SELEÇÃO da álgebra relacional, pois filtra linhas. 

É possível realizar uma consulta sem indicar colunas específicas, retornando-se todas as 
colunas, basta usar o * do seguinte modo: 

SELECT * FROM nome_da_tabela WHERE condição; 

É possível realizar uma instrução SELECT mesmo sem indicar nenhuma condição e, 
portanto, a cláusula WHERE é opcional. Assim, teremos a forma mais simples: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela;  

 

EXEMPLIFICANDO!!! 

Vamos supor que a partir de uma tabela de Clientes com vários atributos, tenhamos 
interesse em apenas o nome e a cidade de cada cliente. Poderemos realizar esta consulta 
com base no comando a seguir: 

SELECT Nome_Cliente, Cidade FROM Clientes;  

  

CLIENTES  SELECT Nome_Cliente, Cidade 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais  Nome_Cliente Cidade 

1 
Alfreds 

Futterkiste 
Maria Anders Obere Str. 57 Berlin 

12209 
Germany 

 Alfreds 
Futterkiste 

Berlin 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 
 Ana Trujillo 

Emparedados y 
helados 

México 
D.F. 

3 
Antonio 
Moreno 
Taquería 

Antonio Moreno 
Mataderos 

2312 
México 

D.F. 
05023 Mexico 

 Antonio Moreno 
Taquería 

México 
D.F. 

 

Note que após o SELECT são indicados os atributos que aparecerão no resultado. Caso seja 
utilizado *, então todos os atributos serão exibidos. 

 



________________________________________ 

 

13 

Em uma tabela, uma coluna pode conter valores duplicados e, algumas vezes, estamos 
interessados somente nos valores diferentes. Para isso, usa-se a cláusula DISTINCT após 
o SELECT. Ao usar SELECT DISTINCT, somente serão retornados os valores 
diferentes ou distintos, isto é, não são exibidos valores duplicados. A sintaxe é: 

SELECT DISTINCT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição; 

 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

Se desejar saber em que países você possui clientes, a consulta a seguir pode ser utilizada: 

SELECT Pais FROM Clientes;  

O retorno dessa consulta será: 

Pais 

Germany 

Mexico 

Mexico 

Note, porém, que neste resultado, o Pais Mexico foi retornado duas vezes. Para eliminar 
essa redundância, podemos usar a cláusula DISTINCT: 

SELECT DISTINCT Pais FROM Clientes;  

O novo resultado será: 

Pais 

Germany 

Mexico 

 

ATENÇÃO!!! 

Cuidado, pois a avaliação de redundância considera todos os valores retornados. Assim, se 
mais de um atributo for retornado, somente serão consideradas duplicadas as linhas que 
possuírem os mesmos valores para todos os atributos. Por exemplo, em SELECT 
DISTINCT Nome, Pais FROM Clientes, os pares (João, México) e (João, Espanha) não 
são duplicados, pois embora o nome seja igual, o país é diferente.  

Mesmo os duplicados são retornados. 

Os duplicados aparecem somente 
uma vez no resultado. 



________________________________________ 

 

14 

Diante do visto até agora, a sintaxe básica é esquematizada a seguir: 

 

Esquema 2 – Sintaxe básica da instrução SELECT. 

 

4- (CESPE / CEBRASPE - 2024 – LNA - Tecnologista) Assinale a opção em que é 
apresentada a palavra-chave, em SQL, que deve ser incluída em uma instrução de SELECT 
para evitar a apresentação de resultados duplicados da tabela. 

a) UNIQUE 

b) NOTDUPLICATE 

c) NOTALL 

d) DISTINCT 

e) ONLY 

Resolução:  

Em uma tabela, uma coluna pode conter valores duplicados e, algumas vezes, estamos 
interessados somente nos valores diferentes. Para isso, usa-se a cláusula DISTINCT após 
o SELECT. Ao usar SELECT DISTINCT, somente serão retornados os valores 
diferentes ou distintos, isto é, não são exibidos valores duplicados. A sintaxe é: 

SELECT DISTINCT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição;  

Gabarito: Letra D. 

 

5- (CESPE / CEBRASPE - 2024 – MPO - Analista de Planejamento e 
Orçamento) Acerca de fundamentos dos bancos de dados relacionais, normalização, 
diagrama entidade-relacionamento e linguagem SQL, julgue o item a seguir. 

Em uma consulta SQL, a cláusula FROM corresponde à seleção do predicado que envolve 
atributos da relação determinada pela cláusula SELECT. 

Resolução:  

A cláusula FROM indica a(s) tabela(s) de onde os dados serão consultados. Os atributos são 
definidos na cláusula SELECT. O predicado (condição) é definido na cláusula WHERE. 

Gabarito: Errado.  

SELECT

•lista_de_atributos

•* retorna todos os 
atributos.

•DISTINCT
elimina 
duplicidades.

FROM

•nome_tabela

WHERE

•condição

•Opcional, mas 
geralmente usada.



________________________________________ 

 

15 

Condições 

A condição é uma expressão condicional (booleana) que identifica tuplas a serem 
recuperadas. Em SQL, os operadores básicos de comparação na clásula WHERE são: 

 

Esquema 3 – Condições na cláusula WHERE. 

 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

Vamos supor que você deseje recuperar os clientes que residem no Mexico, então poderá 
realizar a seguinte consulta:  

SELECT * FROM Clientes WHERE Pais=‘Mexico’;  

O retorno dessa consulta será:  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 

C
on
di
çõ
es

= igual

< menor

<= menor ou igual

> maior

>= maior ou igual

<> diferente

BETWEEN registros em um intervalo

LIKE procurar padrão

IN possíveis valores

IS NULL é nulo



________________________________________ 

 

16 

6- (CESPE / CEBRASPE - 2022 - MP TCE-SC - Analista de Contas Públicas) 
Acerca do conceito de view, da modelagem dimensional, do modelo de referência CRISP‐
DM e da linguagem SQL, julgue o item subsequente. 

O comando a seguir tem a finalidade de mostrar o nome e o email de todos os procuradores 
que recebem salários acima de R$ 30.000,00. 

SELECT nome, email 

FROM procurador 

WHEN salario >= 30.000,00; 

Resolução: 

Primeiramente, a cláusula correta para definir uma condição no comando é WHERE e não 
WHEN. WHEN existe, porém é usada para condições dentro da instrução CASE. 

Em segundo lugar, note que o operador utilizado é >=, então na verdade, o comando 
retorna o nome e e-mail dos procuradores com salário MAIORES OU IGUAIS a 30.000,00 
e não apenas acima desse valor. Por isso, a questão está errada. 

Gabarito: Errado. 

 

7- (FCC - 2022 – TJ CE - Analista Judiciário) Uma tabela chamada cliente possui 
os campos abaixo 

id - int (Primary Key) 

nome - varchar(70) 

cidade - varchar(40) 

estado - varchar(40) 

Em condições ideais, para exibir os dados de todos os clientes, cujo nome da cidade não 
seja igual ao nome do estado, utiliza-se a instrução SQL:  

SELECT * FROM cliente WHERE 

a) cidade =! estado; 

b) cidade !EQUALS estado; 

c) cidade UNLIKE(estado); 

d) cidade <> estado; 

e) cidade UNLIKE estado; 

Resolução: 

O operador para diferente no SQL padrão é o <>. Logo, o item d) realiza o que a questão 
busca. É possível também usar != em alguns SGBDS (o item a inverte como =!, por isso 
não pode ser a resposta). 

Gabarito: Letra D.  



________________________________________ 

 

17 

Note que praticamente todas as condições são bem intuitivas, então vamos detalhar 
somente as condições BETWEEN, LIKE, IN e IS NULL. 

 

Operador BETWEEN 

O operador BETWEEN recupera os registros que estão em um determinado intervalo. 
Os valores podem ser números, texto ou data e tanto os valores de início como o de fim 
são incluídos. 

A sintaxe básica com esse operador é:  

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna 
BETWEEN valor1 AND valor2; 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 
Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 
Vamos supor que você deseje recuperar somente os clientes que possuam CEP entre 00000 
e 06000, então poderá usar a seguinte consulta:  

SELECT * FROM Clientes WHERE CEP BETWEEN 00000 AND 06000;  

O retorno dessa consulta será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Nesse exemplo, temos poucos dados, mas note que o operador BETWEEN pode ser 
bastante útil para um banco com uma infinidade de dados em que queremos separar dados 
com base em intervalos. 

 

 

 

 



________________________________________ 

 

18 

8- (CESPE / CEBRASPE - 2024 – FINEP - Analista) Assinale a opção que apresenta 
a cláusula SQL que permite extrair dados em determinado intervalo.  

a) find in 

b) like 

c) alias 

d) between 

e) ranges 

Resolução:  

O operador BETWEEN recupera os registros que estão em um determinado intervalo. 
Os valores podem ser números, texto ou datas e tanto os valores de início como o de fim 
são incluídos. 

Gabarito: Letra D. 

 

9- (CESPE / CEBRASPE - 2023 – AGER-MT - Analista Regulador) Em 
linguagem de manipulação de dados DML, o operador SQL BETWEEN serve para 

a) delimitar o valor de uma coluna na cláusula WHERE. 

b) delimitar as colunas a serem apresentadas na cláusula WHERE. 

c) delimitar os limites de um campo para a cláusula INSERT. 

d) restringir a quantidade de linhas a serem recuperadas na cláusula UPDATE. 

e) restringir a quantidade de campos na cláusula DELETE. 

Resolução:  

O operador BETWEEN recupera os registros que estão em um determinado intervalo. 
Dito isto, vamos analisar cada um dos itens: 

a) Incorreto: não delimita um único valor, mas um intervalo. 

b) Incorreto: não delimita as colunas, mas sim registros com base em um intervalo. 

c) Correto: isso mesmo, o BETWEEN irá delimintar um intervalo de valores para um ou 
mais campos, podendo ser usado em um SELECT, UPDATE, DELETE ou INSERT após 
a cláusula WHERE. 

d) Incorreto: a cláusula UPDATE não serve para recuperar, mas sim para atualizar. 

e) Incorreto: não delimita os campos, mas sim registros com base em um intervalo. 

Gabarito: Letra C. 

 

 

  



________________________________________ 

 

19 

Operador IN 

O operador IN permite especificar múltiplos valores para uma condição, isto é, a 
condição será testada com base na lista de valores indicada. 

A sua sintaxe básica é: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IN (valor1, 
valor2, ...); 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 
Alfreds 

Futterkiste 
Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno 

Mataderos 
2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place 
Kléber 

Strasbourg 67000 France 

 
Vamos supor que você deseje consultar os clientes de cidades específicas, digamos que de 
Strasbourg e Berlin. Então poderá usar a seguinte consulta: 

SELECT * FROM Clientes WHERE Cidade IN (‘Berlin’, ‘Strasbourg’);  

O retorno dessa consulta será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 
Alfreds 

Futterkiste 
Maria Anders Obere Str. 57 Berlin 12209 Germany 

4 
Blondel père et 

fils 
Frédérique 

Citeaux 
24, place 
Kléber 

Strasbourg 
67000 France 

 
Note que somente foram retornados os registros cuja cidade está informada na cláusula IN, 
que foram Berlin e Strasbourg. 

 

 

 

 

 

 



________________________________________ 

 

20 

10- (FCC - 2018 - SEGEP-MA - Analista Executivo - Programador de Sistemas) 
Um Programador de Sistemas recuperou todos os dados dos países Brasil, Argentina e Peru 
gravados no campo Pais da tabela Cliente, abaixo especificada: 

Tabela Cliente: 

IdCliente 

NomeCliente 

Endereco 

CEP 

Cidade 

SiglaUF 

Pais 

A sintaxe SQL correta que ele usou para realizar essa atividade foi SELECT * FROM 
Cliente 

a) WHERE Pais IN ('Argentina', 'Peru', 'Brasil'); 

b) WHEN Pais = ('Argentina', 'Peru', 'Brasil'); 

c) WHERE Pais = ('Argentina', 'Peru', 'Brasil'); 

d) WHEN Pais IN ('Argentina', 'Peru', 'Brasil'); 

e) WHERE Pais BETWEEN ('Argentina', 'Peru', 'Brasil'); 

Resolução:  

O operador IN permite especificar múltiplos valores para uma condição, isto é, a 
condição será testada com base na lista de valores indicada. A sua sintaxe básica é:  

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IN (valor1, valor2, ...); 

Logo, 

a) Correto: WHERE Pais IN ('Argentina', 'Peru', 'Brasil'); 

b) Incorreto: WHEN Pais = ('Argentina', 'Peru', 'Brasil'); 

A cláusula não é WHEN, mas sim WHERE. Além disso, o = não pode ser usado para 
comparação com mais de um valor. 

c) Incorreto: WHERE Pais = ('Argentina', 'Peru', 'Brasil'); 

O = não pode ser usado para comparação com mais de um valor. 

d) Incorreto: WHEN Pais IN ('Argentina', 'Peru', 'Brasil'); 

A cláusula não é WHEN, mas sim WHERE. 

e) Incorreto: WHERE Pais BETWEEN ('Argentina', 'Peru', 'Brasil'); 

A cláusula BETWEEN é para intervalos e não para listas de valores. 

Gabarito: Letra A.  



________________________________________ 

 

21 

Operador LIKE 

O operador LIKE é utilizado para procurar um padrão em uma coluna. Este operador 
permite a comparação com parte de uma cadeia de caracteres. Este operador é usado em 
conjunto com dois elemenos curinga (wildcard): 

§ % substitui um número qualquer de 0 ou mais caracteres. 

§ _ substitui um único caractere.  

 

A sintaxe com esse operador é: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna LIKE padrão; 

 

Você pode definir uma série de padrões para a consulta, mas o quadro a seguir apresenta 
alguns significados básicos para os padrões: 

Operador LIKE Procurar padrão em uma coluna 

% Substitui um número qualquer de 0 ou mais caracteres. 

_ Substitui um único caractere. 

LIKE ‘A%’ Qualquer string que inicie com A. 

LIKE ‘%A’ Qualquer string que termine com A. 

LIKE ‘%A%’ Qualquer string que tenha A em qualquer posição. 

LIKE ‘A_’ 
String de dois caracteres que tenha a primeira letra A e o segundo 
caractere seja qualquer outro. 

LIKE ‘_A’ 
String de dois caracteres cujo primeiro caractere seja qualquer um e 
a última letra seja a letra A. 

LIKE ‘_A_’ 
String de três caracteres cuja segunda letra seja A, 
independentemente do primeiro ou do último caractere. 

LIKE ‘%A_’ 
Qualquer string que tenha a letra A na penúltima posição e a última 
seja qualquer outro caractere. 

LIKE ‘_A%’ 
Qualquer string que tenha a letra A na segunda posição e o 
primeiro caractere seja qualquer outro caractere. 

LIKE ‘_ _ _’ Qualquer string com exatamente três caracteres. 

LIKE ‘_ _ _%’ Qualquer string com pelo menos três caracteres. 

LIKE ‘%”%’ Qualquer string que tenha o caractere “ em qualquer posição. 

Esquema 4 – Operador LIKE e exemplos. 

 



________________________________________ 

 

22 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 

Vamos supor que você deseje consultar o nome dos clientes que iniciem com ‘An’. A 
seguinte consulta servirá a esse propósito: 

SELECT * FROM Clientes WHERE Nome_Cliente LIKE ‘An%’;  

O retorno dessa consulta será:  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Note que somente foram retornados os registros dos clientes que começam com ‘An’ e 
terminam com qualquer sequência de caracteres. 

Outros exemplos de consultas e padrões possíveis seriam: 

§ Clientes que tenham ‘Ana’ em qualquer parte do nome:  

o SELECT * FROM Clientes WHERE Nome_Cliente LIKE ‘%Ana%’;  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

 

§ Clientes que tenham ‘l’ como a segunda letra:  

o SELECT * FROM Clientes WHERE Nome_Cliente LIKE ‘_l%’;  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France 

 

As possibilidades são inúmeras e dependem do seu objetivo ao realizar a consulta. 



________________________________________ 

 

23 

11- (FGV - 2023 – DPE RS – Técnico) A programadora Fabiana elaborou um 
relatório com o nome do autor dos processos utilizando o seguinte comando SQL: 

SELECT Autor FROM tab_processo 

Ao ver o relatório gerado, o chefe da Fabiana solicitou um relatório contendo apenas os 
autores que possuem o primeiro nome Elizabeth. Contudo, Fabiana observou que havia 
diferentes grafias, como: Elisabeth, Elizabete etc. 

No MySQL, para garantir que qualquer Autor cujo nome comece pelas letras “eli” sejam 
recuperados, Fabiana deve complementar o comando SQL com a cláusula WHERE Autor 
LIKE: 

a) 'eli%' 

b) '%eli%' 

c) 'eli_' 

d) '_eli' 

e) '_eli%' 

Resolução:  

Como o padrão desejado é todo nome que comece com eli, então podemos utilizar ‘eli%’. 

Eli% 
 

Gabarito: Letra A. 

 

12- (FCC - 2023 – COPERGÁS- Analista) Em uma tabela chamada user de um banco 
de dados aberto e em condições ideais, para selecionar todos os registros que possuem 
nomes (campo nome) iniciados com a letra E e terminados com a letra l utiliza-se a instrução 
SQL SELECT * FROM user 

a) LIKE = 'E*l'; 

b) WHERE nome = 'E%l'; 

c) LIKE nome CONTAINS 'E%l'; 

d) WHERE nome LIKE 'E*l'; 

e) WHERE nome LIKE 'E%l'; 

Resolução:  

O operador LIKE é utilizado para procurar um padrão em uma coluna. A sintaxe com 
esse operador é:  

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna LIKE padrão; 

Logo, podemos eliminar os itens a), b) e c) por não apresentarem a palavra-chave LIKE. 

Texto começado 
com Eli. 

Seguido de quaisquer 0 
ou mais caracteres 



________________________________________ 

 

24 

Entre d) e e), a única diferença é o uso de * e %. O operador LIKE pode ser usado com dois 
curingas, o % para representar quaisquer quantidades de caracteres e o _ para representar 
um único caractere. Logo, o item correto é o e). 

Explicando o padrão: 

E%l 
 

Gabarito: Letra E. 

 

13- (CESPE / CEBRASPE - 2022 - BANRISUL - Técnico de Tecnologia da 
Informação) No que se refere à álgebra relacional e a SQL, julgue o item a seguir. 

Considerando-se uma tabela nomeada empregados que contém, entre outras colunas, uma 
identificada como nome, o comando SQL que retorna o nome de todos os empregados que 
tenham o nome luiz ou luis é o seguinte 

SELECT nome FROM empregados WHERE nome like '%lui_%' 

Resolução:  

Vamos analisar o comando: 

SELECT nome  

-- selecionar o nome 

FROM empregados  

-- a partir da tabela empregados 

WHERE nome like '%lui_%' 

-- cujo nome possua ‘lui’ seguido obrigatoriamente de um caractere (_) e que possua 
quaisquer caracteres antes (%) e quaisquer caracteres depois (%). 

Explicando o padrão: 

%lui_% 
 

 

Nesse caso, luis ou luiz respeitam o padrão. 

Gabarito: Certo. 

 

 

 

  

Quaisquer 0 ou mais 
caracteres antes 

Quaisquer 0 ou mais 
caracteres depois 

Obrigatoriamente 
1 caractere 

Texto começado 
com letra E. 

Texto finalizado 
com letra l. 

Quaisquer 0 ou 
mais caracteres 

antes 

 



________________________________________ 

 

25 

Operador IS NULL 

O operador IS NULL testa se um valor é NULO, isto é, se o atributo não possui um valor 
específico. 

A sua sintaxe básica é: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IS NULL; 

Caso queira os não nulos, então basta usar IS NOT NULL. 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IS NOT 
NULL; 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

5 Donald Pateta null null null null null 

 
Vamos supor que você deseje consultar os clientes que possuam o Nome_Contato nulo. A 
seguinte consulta servirá a esse propósito: 

SELECT * FROM Clientes WHERE Nome_Contato IS NULL;  

O retorno dessa consulta será:  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

5 Donald Pateta null null null null null 
 

E se você quiser retornos os clientes que não possuam o Nome_Contato nulo: 

SELECT * FROM Clientes WHERE Nome_Contato IS NOT NULL;  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 



________________________________________ 

 

26 

ATENÇÃO!!! 

A comparação com NULL não deve ser feita com os operadores lógicos = ou <>, mas 
sim com IS NULL e IS NOT NULL. Ao comparar qualquer coisa com NULL usando os 
operadores lógicos comuns, será retornado um resultado desconhecido na comparação 
(UNKNOWN) e, por isso, não serão retornadas linhas. 

 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

5 Donald Pateta null null null null null 

 

O comando 

SELECT * FROM Clientes WHERE CEP = NULL;  

Não irá retornar nenhuma linha, pois ainda que exista um CEP nulo, a comparação não 
deve ser realizada com operadores lógicos. 

Agora, o comando 

SELECT * FROM Clientes WHERE CEP IS NULL;  

Irá retornar o resultado a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

5 Donald Pateta null null null null null 

 

Nesse caso, são retornadas as linhas que possuam CEP nulo. Na tabela, somente a linha do 
IDCliente = 5. 

 

Então, muito cuidado na hora de analisar os comandos, principalmente para as questões que 
perguntam quantas linhas são retornadas. 

 

 

 



________________________________________ 

 

27 

14- (FGV - 2022 – TCU – Auditor Federal de Controle Externo – Controle Externo 
– Auditoria Governamental) Na questão abaixo, considere as tabelas de banco de dados 
T, TX e DUAL, exibidas com suas respectivas instâncias a seguir. 

 

 

 

Analise os cinco comandos SQL exibidos abaixo, utilizando a tabela DUAL apresentada 
anteriormente. 

(1) select * from dual where x = null 

(2) select * from dual where x <> null 

(3) select * from dual where x > 10 

(4) select * from dual where not x > 10 

(5) select * from dual where x > 10 

      union 

      select * from dual where x <= 10 



________________________________________ 

 

28 

Se os resultados desses comandos fossem separados em grupos homogêneos, de modo que 
em cada grupo todos sejam idênticos e distintos dos elementos dos demais grupos, haveria: 

a) apenas um grupo; 

b) apenas dois grupos; 

c) apenas três grupos; 

d) apenas quatro grupos; 

e) cinco grupos. 

Resolução: 

A tabela DUAL possui apenas um registro com valor nulo (NULL).  

A comparação com NULL não deve ser feita com os operadores lógicos = ou <>, mas 
sim com IS NULL e IS NOT NULL. Ao comparar qualquer coisa com NULL usando os 
operadores lógicos comuns, será retornado um resultado desconhecido na comparação 
(UNKNOWN) e, por isso, não serão retornadas linhas. 

Dito isto, vamos analisar os comandos: 

(1) select * from dual where x = null retorna vazio, isto é, nenhuma linha, pois está se 
comparação NULL usando o comparador lógico =. 

(2) select * from dual where x <> null retorna vazio, isto é, nenhuma linha, pois está se 
comparação NULL usando o comparador lógico <>. 

(3) select * from dual where x > 10 retorna vazio, pois não existe nenhum x maior que 
10. 

(4) select * from dual where not x > 10 retorna vazio, pois não existe nenhum x que não 
é maior que 10. 

(5) select * from dual where x > 10 retorna vazio, pois não existe nenhum x maior que 
10. 

      union 

      select * from dual where x <= 10 retorna vazio, pois não existe nenhum x menor ou          

      igual a 10. 

      A união dos dois conjuntos vazio será vazio também. 

Logo, todos os comandos retornam resultados vazios, isto é, sem nenhuma linha. Portanto, 
podemos classificá-los em apenas um grupo, o de resultados vazios. 

A pegadinha da questão era saber que a comparação com nulo não dá erro, pois se desse 
erro, teríamos dois grupos, um de erros e um de vazios. 

Gabarito: Letra A. 

 

  



________________________________________ 

 

29 

Mais de uma condição e negação de condição 

Uma cláusula WHERE pode conter mais de uma condição, sendo possível usar 
operadores lógicos para indicar a união entre as condições: 

§ AND: exibe os registros em que todas as condições são verdadeiras. 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 
AND condição2 AND condição3 ...; 
 

§ OR: exibe os registros em que pelo menos uma condição é verdadeira. 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 OR 
condição2 OR condição3 ...; 

 

Também é possível recuperar os registram que não safisfazem uma determinada condição. 
Basta usar o NOT antes da condição. 

§ NOT: exibe os registros que não satisfazem uma condição. 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE NOT 
condição; 

 

 

Esquema 5 – Cláusulas para definir mais de uma condição e negação de condição. 

 

 

 
 

AND
•Registros em que todas as condições são verdadeiras.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 AND condição2 AND
condição3 ...;

OR
•Registros em que pelo menos uma das condições é verdadeira.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 OR condição2 OR
condição3 ...;

NOT
•Registros que não satisfazem uma condição.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE NOT condição;



________________________________________ 

 

30 

 
EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Para recuperar somente os clientes do Mexico e cujo CEP seja maior ou igual a 05023, 
podemos usar a seguinte consulta: 

SELECT * FROM Clientes WHERE Pais=’Mexico’ AND CEP>=05023;  

O retorno dessa consulta será:  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 
2312 

México 
D.F. 

05023 Mexico 

 
Para retornar os clientes da Alemanha (Germany) OU os que possuam CEP 05021, 
podemos usar a consulta: 

SELECT * FROM Clientes WHERE Pais=’Germany’ OR CEP=05021; 

O retorno dessa consulta será:  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

 
Para retornar os clientes que não são do Mexico, podemos utilizar a consulta: 

SELECT * FROM Clientes WHERE NOT Pais=‘Mexico’;  

Teremos como retorno: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

 

 

 

 

As duas condições são atendidas 

Uma ou outra condição é atendida 



________________________________________ 

 

31 

15- (FGV - 2024 – Câmara Municipal de Fortaleza – Analista Legislativo) Em um 
banco de dados relacional, considere a tabela a seguir, que possui informações sobre 
diferentes tipos de produtos, incluindo eletrônicos, roupas, eletrodomésticos, entre outros: 

Produto (ID, Nome, Tipo, Preço, Fabricante) 

Assinale a alternativa que corresponde à consulta que retornará o nome e o preço dos 
produtos que possuem a palavra “Smart” em seu tipo, somente do fabricante “Banana Inc.” 
e preço abaixo de R$2000,00. 

a) SELECT Nome 

FROM Produto 

WHERE Fabricante = 'Banana Inc.' 

AND Nome = 'Smart' 

AND Preço < 2000; 

 

b) SELECT Nome, Preço 

FROM Produto 

WHERE Tipo = 'Smart' 

AND Fabricante = 'Banana Inc.' 

AND Preço < 2000; 

 

c) SELECT Nome, Preço 

FROM Produto 

WHERE Tipo LIKE '%Smart%' 

AND Fabricante = 'Banana Inc.' 

AND Preço < 2000; 

 

d) SELECT Fabricante, Preço 

 FROM Produto 

 WHERE Fabricante = 'Banana Inc.' 

  AND Tipo = 'Smart' 

  AND Preço < 2000; 

 

e) SELECT Tipo, Preço 

  FROM Produto 

 WHERE Tipo LIKE '%Smart%' 



________________________________________ 

 

32 

  AND Fabricante = 'Banana Inc.' 

  AND Preço > 2000; 

Resolução:  

Queremos uma consulta que retorne o nome e o preço dos produtos que possuem a palavra 
“Smart” em seu tipo, somente do fabricante “Banana Inc.” e preço abaixo de R$2000,00. 
Vamos montar esse comando passo a passo: 

Passo 1 -> Retornar nome e preço:  

SELECT nome, preço ...   

Note que definindo só isso, já conseguimos eliminar os itens a), d) e e), pois eles 
trazem atributos diferentes no SELECT. Somente os itens b) e c) possuem os 
atributos desejados. 

Passo 2 -> Da tabela produto:  

FROM Produto ... 

Passo 3 -> 1ªcondição de possuir a palavra “Smart” no tipo:  

WHERE Tipo LIKE '%Smart%' ... 

Aqui vale um cuidado, pois como queremos quaisquer produtos que POSSUEM a 
palavra “Smart” no tipo, não devemos utilizar o =. Se utilizássemos o igual, apenas 
seriam retornados os produtos que tivessem exatamente o tipo “Smart” e não com 
essa palavra em qualquer parte do tipo. Com o igual, “TV Smart” não seria 
retornada, por exemplo. Com isso eliminamos o item b). 

Por isso, devemos usamos o operador LIKE para definir o padrão de ter a palavra 
em qualquer parte do tipo: 

%Smart% 
 

Passo 4 -> 2ªcondição de que o fabricante seja “Banana Inc.”:  

AND Fabricante = 'Banana Inc.' 

Nesse caso, queremos exatamente ‘Banana Inc.’, por isso usamos o =. 

Passo 5 -> 3ªcondição de que o preço seja menor que 2000:  

AND Preço < 2000; 

Gabarito: Letra C. 

 

  

Quaisquer 0 ou mais 
caracteres antes 

Quaisquer 0 ou mais 
caracteres depois 

A palavra Smart 



________________________________________ 

 

33 

Esquema geral sobre a sintaxe básica do SELECT 

Um esquema geral sobre a sintaxe básica da instrução SELECT é: 

 

Esquema 6 – Instrução SELECT. 

 

  

mais de 
uma 

condição
ou

negação 
de 

condição

condiçãoWHEREtabelaFROMLista de 
atributosSELECT

SELECT

OU 

SELECT 
DISTINCT

coluna1, 
coluna 2, 

...

ou

*

FROM tabela WHERE

=

<

<=

>

>=

AND

OR

NOT<>

BETWEEN

LIKE

IN

IS NULL

coluna1, 
coluna 2, 

...

ou

*

FROM tabela



________________________________________ 

 

34 

2.1.2 Definição de alias 

Algumas vezes é interessante atribuir um alias (apelido) para uma tabela ou um atributo 
para facilitar a consulta ou mesmo para evitar ambiguidades. Sobre os alias: 

§ São usados para fornecer um nome temporário a uma tabela ou coluna em 
uma tabela. 

§ Costumam ser usados para tornar os nomes das colunas mais legíveis. 

§ Existe apenas para a duração da consulta. 

A cláusula AS é usada para atribuição de uma alias, embora seja possível omití-la: 

SELECT coluna1 AS nova, coluna2 FROM nome_da_tabela WHERE condição; 

OU 

SELECT coluna1 nova, coluna2 FROM nome_da_tabela WHERE condição; 

 

SELECT coluna1, coluna2... FROM nome_da_tabela AS nova WHERE condição; 

OU 

SELECT coluna1, coluna2... FROM nome_da_tabela nova WHERE condição; 
 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Para recuperar o nome dos clientes e o “Nome_Contato” como “Nome_do _Representante” 
podemos usar:  

SELECT Nome_Cliente, Nome_Contato AS Nome_do_Representante FROM Clientes;  

O retorno dessa consulta será: 

Nome_Cliente Nome_do_Representante 

Alfreds Futterkiste Maria Anders 

Ana Trujillo Emparedados y helados Ana Trujillo 

Antonio Moreno Taquería Antonio Moreno 

Perceba que o resultado apresenta o nome informado no alias para a coluna 
Nome_do_Representante e não o nome original na tabela. 



________________________________________ 

 

35 

ATENÇÃO!!! 

Ao definir um alias em uma tabela, então pode-se usá-lo para fazer referência a tabela e seus 
atributos. Por exemplo, ao usar um alias p para produto, podemos referenciar um atributo 
com p.id_produto. 

SELECT p.id_produto FROM produto AS p WHERE p.preco > 1000; 

OU 

SELECT p.id_produto FROM produto p WHERE p.preco > 1000; 
 

 

 

Esquema 7 – Atribuição de alias. 

 

16- (FUNDATEC - 2023 – CAU-RS – Analista Superior) Na linguagem SQL, um 
alias para uma coluna ou tabela pode ser criado utilizando a palavra-chave: 

a) HOW 

b) AS 

c) FOR 

d) ON 

e) LIKE 

Resolução:  

A cláusula AS é usada para atribuição de uma alias, embora seja possível omití-la: 

SELECT coluna1 AS nova, coluna2 FROM nome_da_tabela WHERE condição; 

OU 

SELECT coluna1 nova, coluna2 FROM nome_da_tabela WHERE condição; 

 

SELECT coluna1, coluna2... FROM nome_da_tabela AS nova WHERE condição; 

OU 

SELECT coluna1, coluna2... FROM nome_da_tabela nova WHERE condição; 
Gabarito: Letra B. 

  

•Nome temporário a uma tabela ou coluna
•Tornar os nomes das colunas mais legíveis
•Existe apenas para a duração da consulta
•Cláusula AS (pode ser omitida)

Atribuição de alias



________________________________________ 

 

36 

2.1.3 Ordenação com SELECT 

A linguagem SQL permite que o usuário ordene as tuplas no resultado de uma consulta 
pelos valores de um ou mais atributos que aparecem, usando a cláusula ORDER BY. 

A ordem padrão está em ordem crescente de valores. A palavra-chave DESC pode ser usada 
para ordenar os resultados em ordem decrescente de valores. A palavra-chave ASC pode 
ser usada para especificar a ordem crescente explicitamente.  

A sintaxe básica para esse comando é: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição ORDER BY 
coluna ASC/DESC; 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 
Vamos supor que você deseje consultar os clientes ordenados pelo país, exceto os clientes 
do Mexico. A seguinte consulta servirá a esse propósito:  

SELECT * FROM Clientes WHERE NOT Pais=’Mexico’ ORDER BY Pais ASC; OU 

 SELECT * FROM Clientes WHERE NOT Pais=’Mexico’ ORDER BY Pais; 

O retorno dessa consulta será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

 
Se quisesse retornar em ordem decrescente, bastaria usar a consulta: 

SELECT * FROM Clientes WHERE NOT Pais=’Mexico’ ORDER BY Pais DESC;  

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France 

 

 

 



________________________________________ 

 

37 

É importante destacar que é possível ordenar por mais de uma coluna, bastando indicar as 
colunas e a ordem desejada. Assim, por exemplo, valem as seguintes sintaxes: 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição ORDER 
BY coluna1, coluna2 ASC; 

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição ORDER 
BY coluna1 ASC coluna2 DESC; 

 

ATENÇÃO!!!  

Uma sintaxe possível para a cláusula ORDER BY é a que indica o número da coluna ao 
invés de seu nome. Assim, não se assuste se você encontrar ORDER BY 1 ou coisa do tipo. 

O número indica qual coluna da cláusula SELECT será usada para a ordenação. Assim, se 
for 1, será usada a primeira coluna, se for 2, a segunda, e, assim, sucessivamente. 

EXEMPLIFICANDO!!!  

Dado o comando a seguir: 

SELECT cpf, nome FROM funcionario WHERE salario > 1000 ORDER BY 1 ASC; 

Haverá a ordenação com base no campo cpf, pois é o primeiro campo após o SELECT. 

Já no comando a seguir: 

SELECT cpf, nome FROM funcionario WHERE salario > 1000 ORDER BY 2 ASC; 

Haverá a ordenação com base no campo nome, pois é o segundo campo após o SELECT. 

 

Esquematizando: 

 

Esquema 8 – Cláusula ORDER BY. 

 

 

 

 

 

 

ORDER 
BY

colunas Ordem 
crescente

colunas ASC Ordem 
crescente

colunas DESC Ordem 
decrescente



________________________________________ 

 

38 

17- (VUNESP - 2023 – TJM SP – Técnico em Comunicação e Processamento de 
Dados Judiciário) Considere a seguinte tabela de um banco de dados relacional: 

Passagem (ID, Origem, Destino, Valor) 

O comando SQL para obter a Origem e Destino para valores situados entre 200,00 e 
1.000,00, ordenado pela Origem, é: 

a) SELECT Origem, Destino 

      FROM Passagem 

      HAVING Valor BETWEEN (200.00; 1000.00); 

 

b) SELECT Origem, Destino 

      FROM Passagem 

      ORDER BY Origem AND 

      (Valor >= 200.00 OR Valor <= 1000.00); 

 

c) SELECT Origem, Destino 

      FROM Passagem 

      WHERE Origem ASC AND 

       Valor BETWEEN (200.00 <> 1000.00); 

 

d) SELECT Origem, Destino 

      FROM Passagem 

      WHERE Valor BETWEEN (200.00 AND 1000.00) 

      ORDER BY Origem; 

 

e) SELECT Origem, Destino 

      FROM Passagem 

      HAVING Origem ASC AND 

      Valor BETWEEN (200.00 UNTIL 1000.00); 

Resolução:  

Queremos uma consulta que retorne a Origem e o Destino de passagens que possuem 
valores entre 200,00 e 1000,00, ordenado pela origem. Vamos montar esse comando passo 
a passo: 

Passo 1 -> Retornar Origem e Destino:  

SELECT Origem, Destino ...   



________________________________________ 

 

39 

Passo 2 -> Da tabela Passagem:  

FROM Passagem ... 

Passo 3 -> 1ª condição de valor entre 200 e 1000:  

WHERE Valor BETWEEN 200 AND 1000 ... 

Até aqui já conseguimos eliminar alguns itens, pois os a), b) e e) não possuem a 
cláusula WHERE. Um detalhe é que nos itens os valores estão utilizando 2 casas 
decimais com o separador ponto (200.00 e 1000.00). E outro detalhe é que os itens 
estão colocando as condições entre parênteses.  

Passo 4 -> ordenado por origem:  

ORDER BY origem 

Gabarito: Letra D. 

 

18- (FCC - 2022 – TRT 14ª Região - Técnico Judiciário) Considere a seguinte 
sintaxe SQL para obter todas as colunas da tabela Clientes, classificando a 
coluna Estado em ordem decrescente: 

..I.. * FROM Clientes ..II.. Estado  ...III... ; 

As lacunas I, II e III devem ser preenchidas, respectivamente, por: 

a) SELECT − CLASS − ORDER DECR 

b) CLASS − ORDER BY − INV 

c) SELECT − ORDER BY − DESC 

d) OBTAIN − CLASS DESC − ORDER 

e) SELECT CLASS − BY − DESC 

Resolução:  

Para classificar os clientes em ordem decrescente de Estado, a sintaxe será: 

SELECT * FROM Clientes ORDER BY Estado DESC; 

Gabarito: Letra C. 

  



________________________________________ 

 

40 

2.1.4 Funções de agregação 

As funções de agregação são usadas para resumir informações de várias tuplas em uma 
síntese de tupla única. Existem diversas funções de agregação embutidas no SQL: 
COUNT, SUM, MAX, MIN e AVG. 

A sintaxe básica para essas funções é: 

SELECT FUNCAO(coluna1) FROM nome_da_tabela WHERE condição; em que 
FUNCAO é qualquer uma das funções de agregação.  

O quadro a seguir apresenta as definições dessas funções: 

FUNÇÃO RETORNO 

MIN Menor valor de uma coluna. 

MAX Maior valor de uma coluna. 

COUNT Número de linhas que atendem a um critério. 

AVG Média dos valores de uma coluna numérica. 

SUM Soma dos valores de uma coluna numérica. 

Esquema 9 – Funções de agregação. 

 

EXEMPLIFICANDO!!!  

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

5 Suco 2 2 Litros 8 

 

Vamos supor que você deseje consultar a quantidade de produtos que existem, então poderá 
usar a seguinte consulta: 

SELECT COUNT(ProdutoID) FROM Produtos; 

O retorno dessa consulta será: 

COUNT(ProdutoID) 

5 

 

 

 



________________________________________ 

 

41 

 

Continuando o exemplo para mais algumas consultas com função de agregação: 

§ Consultar o menor preço: 

SELECT MIN(Preco) FROM Produtos; 

MIN(Preco) 

3 

 

§ Consultar o maior preço:  

SELECT MAX(Preco) FROM Produtos; 

MAX(Preco) 

8 

 
§ Consultar o preço médio: 

SELECT AVG(Preco) FROM Produtos; 

AVG(Preco) 

5,2 

 
Dada a tabela DetalheVendas: 

DetalheVendasID VendaID ProdutoID Quantidade 

1 10248 11 12 

2 10248 42 10 

3 10248 72 5 

4 10249 14 9 

5 10249 51 40 

 
Para selecionar a quantidade vendida, podemos usar o agregador SUM: 

SELECT SUM(Quantidade) FROM DetalheVendas; 

O retorno será: 

SUM(Quantidade) 

76 

 

 

 

 



________________________________________ 

 

42 

ATENÇÃO!!! 
A cláusula COUNT pode ser usada com o nome da coluna, * ou com 1: 

§ COUNT(nome_da_coluna): retorna o número de linhas excluindo-se da contagem 
as linhas que possuem nulo para a coluna desejada. 

§ COUNT(*) ou COUNT(1): retorna o número total de linhas, independentemente 
de valores nulos registrados para qualquer campo. 

A cláusula SUM pode ser usada com o nome da coluna ou com um número indicativo da 
quantidade a ser somada: 

§ SUM(nome_da_coluna): retorna o somatório dos valores presentes em 
nome_da_coluna. 

§ SUM(1): retorna um somatório, sendo somado 1 para cada registro encontrado. 
Resultado similar a COUNT(*) ou COUNT(1), porém retorna NULL se não 
encontrar nenhum registro. 

§ SUM(2): retorna um somatório, sendo somado 2 para cada registro encontrado.  

§ SUM(N): retorna um somatório, sendo somado N para cada registro encontrado. 

 

EXEMPLIFICANDO!!! 

Dada a tabela DetalheVendas: 

DetalheVendasID VendaID ProdutoID Quantidade 

1 10248 11 12 

2 10248 42 10 

3 10248 72 5 

4 10249 14 9 

5 10249 51 NULL 

Vejamos quais os resultados dos comandos: 

SELECT COUNT(Quantidade) FROM DetalheVendas;  

Resultado: 4 (total de linhas que não possui Quantidade com NULL). 

SELECT COUNT(*) FROM DetalheVendas; ou SELECT COUNT(1) FROM DetalheVendas; 

Resultado: 5 (total de linhas incluindo as que possuem valores NULL). 

SELECT SUM(Quantidade) FROM DetalheVendas;  

Resultado: 36 (soma dos valores da coluna quantidade). 

SELECT SUM(1) FROM DetalheVendas;  

Resultado: 5 (soma 1 para cada registro da tabela). 

SELECT SUM(3) FROM DetalheVendas;  

Resultado: 15 (soma 3 para cada registro da tabela). 



________________________________________ 

 

43 

19- (CESPE / CEBRASPE - 2024 –MPO - Analista de Planejamento e Orçamento) 
No que se refere à qualidade e visualização de dados, julgue o item a seguir. 

Soma(SUM), Média(AVG), Máximo(MAX), Mínimo(MIN), Contagem(COUNT) e 
Agrupamento(GROUP BY) são exemplos de técnicas de agregação de dados. 

Resolução:  

As funções de agregação são usadas para resumir informações de várias tuplas em uma 
síntese de tupla única. Existem diversas funções de agregação embutidas no SQL: 
COUNT, SUM, MAX, MIN e AVG. O quadro a seguir apresenta as definições dessas 
funções: 

FUNÇÃO RETORNO 

MIN Menor valor de uma coluna. 

MAX Maior valor de uma coluna. 

COUNT Número de linhas que atendem a um critério. 

AVG Média dos valores de uma coluna numérica. 

SUM Soma dos valores de uma coluna numérica. 

Gabarito: Certo. 

 

20- (CESPE / CEBRASPE - 2023 – MPE-RO – Analista) Assinale a opção em que a 
instrução SQL apresentada, quando executada, permite mostrar a quantidade de contratos 
ativos de determinado órgão no ano de 2023. 

a) SELECT SUM (*) 

FROM contrato 

WHERE situacao IN 'ATIVO' 

AND ano= 2023; 

 

b) SELECT AVG (*) 

FROM contrato 

WHERE situacao = 'ATIVO' 

AND ano= 2023; 

 

c) SELECT COUNT (*) 

FROM contrato 

WHERE situacao IN 'ATIVO' 

OR ano= 2023; 

 



________________________________________ 

 

44 

d) SELECT MAX (*) 

FROM contrato 

WHERE situacao = 'ATIVO' 

OR ano= 2023; 

 

e) SELECT COUNT (*) 

FROM contrato 

WHERE situacao = 'ATIVO' 

AND ano= 2023; 

Resolução:  

Queremos mostrar a quantidade de contratos ativos de determinado órgão no ano de 2023. 
Vamos montar o comando passo a passo: 

Passo 1 -> Retornar quantidade de contratos:  

SELECT COUNT(*) ...   

Para retornar a quantidade de registros, podemos usar a função de agregação 
COUNT. Logo, COUNT(*) irá retornar a quantidade de linhas da consulta.  

Aqui já conseguimos eliminar os itens a), b) e d) que trazem funções de agregação 
com finalidades diferentes. A) usa SUM, que seria para o somatório de valores, b) 
usa AVG que seria para a média, e d) usa MAX que seria para o valor máximo. 

Passo 2 -> Da tabela contrato:  

FROM contrato ... 

Passo 3 -> 1ª condição deque a situação seja ativa:  

WHERE situacao = ‘ATIVO’ ... 

Queremos uma situação exata, então usamos o =.  

Vale ressaltar que o IN até poderia ser utilizado, porém a sintaxe exige (), por isso 
o item c) não seria aplicável. Esse trecho no item c) seria correto se fosse WHERE 
situacao IN ('ATIVO'). 

Passo 4 -> 2ªcondição de que o ano seja 2023:  

AND ano = 2023; 

Nesse caso, queremos exatamente o ano 2023, por isso usamos o =. 

Uma ressalva é que devemos usar o AND porque todas as condições devem ser 
atendidas conforme comando da questão. O OR presente não seria adequado, pois 
indicaria que apenas uma das condições poderia ser verdadeira. 

Gabarito: Letra E. 

 



________________________________________ 

 

45 

21- (FCC - 2023 – TRT 12ª Região- Analista Judiciário) Considere uma tabela 
denominada Cidadao e as colunas Nome_Cidadao e Valor_Recebido. 

Para obter a média dos valores maiores que 200 recebidos pelos cidadãos, um Analista deve 
utilizar o comando 

a) SELECT AVG (Valor_Recebido > 200) FROM Cidadao; 

b) SELECT AVG (Valor_Recebido) FROM Cidadao WHERE Valor_Recebido > 200; 

c) SELECT AVG (Valor_Recebido) > 200 FROM Cidadao; 

d) SELECT FROM Cidadao AVG (Valor_Recebido) > 200; 

e) SELECT Nome Cidadao and AVG (Valor_Recebido) FROM Cidadao WHERE 
Valor_Recebido > 200; 

Resolução:  

Queremos obter a média dos valores maiores que 200 recebidos pelos cidadãos. Vamos 
montar o comando passo a passo: 

Passo 1 -> Retornar a média de valores recebidos:  

SELECT AVG(Valor_Recebido) ...   

Para retornar a média de valores, usamos a função agregadora AVG. Logo, 
AVG(Valor_Recebido) irá retornar a média dos valores da coluna Valor_Recebido. 

Passo 2 -> Da tabela Cidadao:  

FROM Cidadao ... 

Passo 3 -> condição de valor recebido maior que 200:  

WHERE Valor_Recebido > 200; 

Logo: 

a) Incorreto: SELECT AVG (Valor_Recebido > 200) FROM Cidadao;  

A condição deve vir após o WHERE e não no SELECT. 

b) Correto: SELECT AVG (Valor_Recebido) FROM Cidadao WHERE Valor_Recebido > 
200 conforme comando que construímos passo a passo. 

c) Incorreto: SELECT AVG (Valor_Recebido) > 200 FROM Cidadao; 

A condição deve vir após o WHERE e não no SELECT. 

d) Incorreto: SELECT FROM Cidadao AVG (Valor_Recebido) > 200; 

A função AVG deve vir após o SELECT e a condição deve vir após o WHERE. 

e) Incorreto: SELECT Nome_Cidadao and , AVG (Valor_Recebido) FROM Cidadao 
WHERE Valor_Recebido > 200; Esse seria correto com uso de , ao invés de and para 
separar os atributos no SELECT. 

Gabarito: Letra B. 

 



________________________________________ 

 

46 

22- (FGV - 2015 - DPE-RO - Analista da Defensoria Pública - Analista 
Programador) Analise o comando SQL a seguir. 

select max(A1) X, count(*) Y, sum(A1) Z from T 

Executado quando a instância da tabela T estiver vazia (com zero registros), esse comando 
produz como resultado: 

a)  

b)  

c)  

d)  

e)  

Resolução: 

Questão bem interessante e diferente. Basicamente ela quer saber qual o retorno das funções 
de agregação MAX, COUNT e SUM em uma tabela vazia. 

As funções MAX(A1) e SUM(A1) retornarão NULL, pois o valor do número máximo ou 
soma dos registros não é conhecido. Não podemos dizer que é 0, pois nem mesmo temos 
registros para fazer qualquer comparativo ou somatório. 

Já a função COUNT(*) retornará 0, pois o valor do número de registros, embora zerado, é 
conhecido. 

Gabarito: Letra A. 

 

  



________________________________________ 

 

47 

2.1.5 Agrupamentos com SELECT 

Geralmente queremos aplicar as funções de agregação a subgrupos de tuplas em uma 
relação, na qual os subgrupos são baseados em alguns valores de atributo. Cada grupo 
(partição) consistirá nas tuplas que possuem o mesmo valor de algum(ns) atributo(s), 
chamado(s) atributo(s) de agrupamento. 

A linguagem SQL tem uma cláusula GROUP BY para aplicar agrupamentos. Esta 
cláusula especifica os atributos de agrupamento, que também devem aparecer na cláusula 
SELECT, de modo que o valor resultante da aplicação de cada função de agregação a um 
grupo de tuplas apareça junto com o valor do(s) atributo(s) de agrupamento. 

A sintaxe básica da cláusula GROUP BY é:  

SELECT colunas FROM nome_da_tabela WHERE condição GROUP BY coluna;  

 

EXEMPLIFICANDO!!!  

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

5 Suco 2 2 Litros 8 

 
Vamos supor que você deseje consultar a quantidade de produtos que são fornecidos por 
cada fornecedor, então poderá usar a seguinte consulta: 

SELECT FornecedorID, COUNT(ProdutoID) FROM Produtos GROUP BY 
FornecedorID;  

O retorno dessa consulta será: 

FornecedorID COUNT(ProdutoID) 

1 3 

2 2 

 

 

 

 

 

 



________________________________________ 

 

48 

A cláusula HAVING pode ser usada para definir uma condição para um agrupamento 
com GROUP BY. A sintaxe básica da cláusula GROUP BY com HAVING é:  

SELECT colunas FROM nome_da_tabela WHERE condição GROUP BY coluna 
HAVING condição;  

 

EXEMPLIFICANDO!!!  

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

5 Suco 2 2 Litros 8 

 

Vamos supor que você deseje consultar a quantidade de produtos que são fornecidos por 
cada fornecedor, porém somente aqueles que forneçam uma quantidade de produtos menor 
ou igual a 2, então poderá usar a seguinte consulta: 

SELECT FornecedorID, COUNT(ProdutoID) FROM Produtos GROUP BY 
FornecedorID HAVING COUNT(ProdutoID) <= 2; 

O retorno dessa consulta será: 

FornecedorID COUNT(ProdutoID) 

2 2 

 
Note que o fornecedor 1 não foi retornado na consulta, pois fornece 3 produtos. 

 

 

 

Esquema 10 – Cláusula GROUP BY e HAVING. 

 

 

GROUP BY coluna HAVING condição com 
função agregadora



________________________________________ 

 

49 

23- (CESPE / CEBRASPE - 2024 –FINEP - Analista) Na tabela SQL criada pela 
expressão a seguir, sessao corresponde a uma sessão e a variável duracao corresponde à 
duração da sessão de certo usuário. 

create table sessao ( 

   id integer primary key, 

   userid integer not null, 

   duracao decimal not null 

)  

A partir dessas informações, assinale a opção que corresponde ao script utilizado para se 
obter o tempo médio de duração das sessões dos usuários que tenham mais de uma sessão. 

a) select userid, avg(duracao) from sessao group by userid having count(*)>1 

b) select id, userid, avg(duracao) from sessao where count(*)>1 

c) select userid, avg(duracao) from sessao having count(id)>1 

d) select id, userid, avg(duracao) from sessao where count(*)>1 group by id, userid 

e) select id, avg(duracao) from sessão group by id having count(*)>1 

Resolução:  

Queremos obter o tempo médio de duração das sessões dos usuários que tenham mais de 
uma sessão. Vamos montar o comando passo a passo para isso: 

Passo 1 -> retornar o tempo médio:  

SELECT userid, avg(duracao) ...   

Para retornar a média de um atributo, usamos a função AVG. Logo, AVG(duração) 
trará a média de durações das sessões. Trouxemos também o userid, pois vamos 
precisar da duração média de cada usuário. 

Passo 2 -> da tabela sessao:  

FROM sessao ... 

Passo 3 -> agrupado por usuário:  

GROUP BY userid ... 

A cláusula GROUP BY é usada para definir os grupos. Como queremos agrupar por 
usuário, então podemos usar o atributo userid (identificador de cada usuário). 

Passo 4 -> filtrar grupos de usuários que tenham mais de uma sessão:  

HAVING count(*)>1; 

A assertiva solicitou que somente sejam retornados os grupos de usuários que 
possuam mais de uma sessão. Para isso, é necessário aplicar a cláusula HAVING 
para filtrar os grupos. 

Vamos analisar os itens: 



________________________________________ 

 

50 

a) Correto: select userid, avg(duracao) from sessao group by userid having count(*)>1 

A sintaxe está correta e realiza o que se pede. 

b) Incorreto: select id, userid, avg(duracao) from sessao where count(*)>1 

Uma função de agregação como COUNT não deve ser utilizada diretamente na cláusula 
WHERE, devendo ser usada após o SELECT ou após o HAVING da cláusula GROUP BY. 

c) Incorreto: select userid, avg(duracao) from sessao ??? having count(id)>1 

Faltou a cláusula GROUP BY. 

d) Incorreto: select id, userid, avg(duracao) from sessao where count(*)>1 group by id, 
userid 

Uma função de agregação como COUNT não deve ser utilizada diretamente na cláusula 
WHERE, devendo ser usada após o SELECT ou após o HAVING da cláusula GROUP BY.  

e) Incorreto: select id, avg(duracao) from sessão group by id having count(*)>1 

Embora a sintaxe aqui seja correta, usar o id como agrupador não realizaria o que a questão 
pede. A questão solicita o agrupamento por usuário e não por sessão. Id é o identificador da 
sessão. Além disso, é chave primária e, portanto, não se repete. Logo, nunca haverá um 
grupo que possua mais de um registro com mesmo id. 

Gabarito: Letra A. 

 

24- (CESPE / CEBRASPE - 2023 – POLC-AL - Perito Criminal) Com relação aos 
componentes de um computador, aos barramentos de E/S, à aritmética computacional e à 
linguagem SQL, julgue o próximo item. 

Em SQL, para que não haja erro de construção (sintaxe), as cláusulas GROUP BY e 
HAVING, quando usadas, devem ser definidas sempre antes da cláusula WHERE. 

Resolução:  

As cláusulas GROUP BY e HAVING devem vir após a cláusula WHERE. A ordem correta 
segue a seguinte sintaxe: 

SELECT colunas FROM nome_da_tabela WHERE condição GROUP BY coluna 
HAVING condição;  

Gabarito: Errado. 

 

 

 

 

 

 

 



________________________________________ 

 

51 

25- (FGV - 2024 –TJ-MS – Técnico de Nível Superior) Observe script SQL a seguir. 

SELECT COUNT(*) AS [Quantidade], Tipo_Processo 

FROM Processo 

GROUP BY Tipo_Processo; 

O resultado da execução desse script é: 

a) a lista dos registros da tabela quantidade; 

b) a quantidade de processos por tipo; 

c) a contagem dos registros da tabela de tipos de processos; 

d) o agrupamento de processos que realizam contagem; 

e) a contagem dos processos relacionados à quantidade de valores. 

Resolução:  

Vamos analisar o comando: 

SELECT COUNT(*) AS [Quantidade], Tipo_Processo 

-- Seleciona o número de registros (COUNT(*)) e o Tipo de Processo. Em AS 
[Quantidade] temos a definição de um alias para a contagem, ou seja, no resultado, o título 
da coluna será [Quantidade] ao invés de COUNT(*). 

FROM Processo 

-- Da tabela Processo. 

GROUP BY Tipo_Processo; 

-- Agrupando os resultados pelo Tipo de Processo. 

Portanto, esse comando serve para exibir o número de processos agrupados por tipo. 

Gabarito: Letra B. 

  



________________________________________ 

 

52 

2.1.6 Produto Cartesiano  

O Produto Cartesiano seleciona todos os pares de linhas das duas relações de entrada 
(independentemente de ter ou não os mesmos valores em atributos comuns). A nova relação 
possui todos os atributos que compõem cada uma das relações que fazem parte da operação. 

A quantidade de linhas resultantes de um produto cartesiano será exatamente o produto 
entre a quantidade de linhas das relações de entrada. 

Em SQL, o produto cartesiano é indicado com o uso de vírgulas entre as tabelas desejadas.  

SELECT tabela1.coluna1, tabela2.coluna2., ... FROM tabela1, tabela2 WHERE 
condição; 

Como temos mais de uma tabela sendo referenciada, é importante informar a qual tabela 
pertence um atributo. Assim, tabela1.coluna1 indica que desejamos obter o valor de coluna1 
que está na tabela 1. 

 

EXEMPLIFICANDO!!!  

Dadas as tabelas Cliente e Pedido a seguir: 

CLIENTE    PEDIDO    

CD_CLIENTE NM_CLIENTE DT_CADASTRO  NR_PEDIDO CD_CLIENTE QT_TOTAL VL_TOTAL 

1 Pedro da Silva 25/05/2009  10 1 20 34 

2 João de Souza 28/05/2009  20 2 50 100 

O produto cartesiano destas tabelas será obtido pela seguinte sintaxe:  

SELECT * FROM Cliente, Pedido; 

O retorno dessa consulta será: 

CD_CLIENTE NM_CLIENTE DT_CADASTRO NR_PEDIDO CD_CLIENTE QT_TOTAL VL_TOTAL 

1 Pedro da Silva 25/05/2009 10 1 20 34 

1 Pedro da Silva 25/05/2009 20 2 50 100 

2 João de Souza 28/05/2009 10 1 20 34 

2 João de Souza 28/05/2009 20 2 50 100 

Note que foi retornada uma linha para cada cliente, relacionando-o com cada pedido, mesmo 
aqueles que não são deste cliente. Houve um cruzamento total entre as linhas das duas 
tabelas. Por exemplo, “Pedro da Silva” foi relacionado tanto com o pedido de nr 10 quanto 
com o pedido de nr 20, mesmo que o seu ID esteja relacionado apenas ao pedido 10. 

 

DICA DO PROFESSOR!!!  

A quantidade de linhas do resultado do produto cartesiano é dada pela multiplicação da 
quantidade de linhas das tabelas de entrada. Logo, se A possui 10 linhas e B possui 100 
linhas, então SELECT * FROM A, B irá possuir 1000 linhas. 

Porém, tome muito cuidado, pois pode haver alguma outra condição após o WHERE ou 
mesmo nas tabelas de entrada que altere essa quantidade de linhas do resultado. 



________________________________________ 

 

53 

Esquematicamente temos que: 

 

Esquema 11 – Produto Cartesiano. 

 

26- (CESPE / CEBRASPE - 2022 - TELEBRAS - Especialista em Gestão de 
Telecomunicações) Julgue o seguinte item, pertinentes a bancos de dados. 

Conforme os conceitos de SQL (ANSI), em uma expressão SQL o produto cartesiano resulta 
que algumas linhas da primeira tabela são unidas a todas as linhas da segunda tabela. 

Resolução:  

O produto cartesiano resulta de TODAS (e não apenas algumas) as linhas da primeira com 
todas as linhas da segunda, ou seja, há um cruzamento completo das linhas das tabelas de 
entrada. 

Gabarito: Errado. 

 

27- (CESPE - 2019 - TJ-AM - Assistente Judiciário - Programador)  

 

Considerando a formulação do algoritmo conceitual da consulta em SQL precedente, julgue 
o item a seguir. 

A cláusula FROM é avaliada para produzir uma nova tabela, e essa nova tabela não é 
produzida a partir do produto cartesiano das tabelas P e FP. 

Resolução:  

A cláusula FROM é avaliada para verificar quais as tabelas em que os dados serão buscados.  

O Produto Cartesiano seleciona todos os pares de linhas das duas relações de entrada 
(independentemente de ter ou não os mesmos valores em atributos comuns).  

Nesse exemplo da questão, a cláusula FROM P, FP indica que a busca ocorrerá no produto 
cartesiano das tabelas P e FP. 

Gabarito: Errado. 

Produto cartesiano

Seleciona todos os pares 
de linhas das duas 

relações de entrada
(independentemente de ter 
ou não os mesmos valores 

em atributos comuns). 

SELECT tabela1.coluna1, 
tabela2.coluna2., ... FROM
tabela1, tabela2 WHERE

condição;



________________________________________ 

 

54 

28- (FGV - 2015 - TJ-PI - Analista Judiciário - Analista de Sistemas / 
Desenvolvimento) Atenção: 

Na questão a seguir, considere a tabela T mostrada abaixo com a respectiva instância. 

 

O número de linhas produzidas, além da linha de títulos, pelo comando SQL 

select * 

from t t1, t t2, t t3 

where t1.b is null 

é: 

a) 1 

b) 4 

c) 8 

d) 16 

e) 32 

Resolução: 

O comando apresenta o produto cartesiano de três cópias da mesma tabela, contudo com a 
condição de que b em t1 seja NULL. Para encontrar a quantidade de linhas de um produto 
cartesiano, temos que multiplicar o número de linhas das tabelas. Sendo assim, 

t1 (somente as linhas com b igual a NULL) x t2 x t3 = 1 x 4 x 4 = 16 linhas 

Observe que além do produto cartesiano, há uma condição WHERE que limita a quantidade 
de linhas de t1 que formará o resultado. 

Gabarito: Letra D. 

  



________________________________________ 

 

55 

2.1.7 Junções (joins) 

As tabelas de junção, que combinam duas ou mais tabelas baseando-se em colunas 
relacionadas. As tabelas de junção são especificadas segundo a cláusula JOIN, que podem 
ser dos seguintes tipos: 

 

Esquema 12 – Tipos de JOIN. 

 

A sintaxe básica para consultas com junções é: 

SELECT colunas FROM tabela1 JOIN tabela2 ON tabela1.coluna = 
tabela2.coluna;  

 

Para o INNER JOIN, se as colunas em ambas as tabelas tiverem o mesmo nome, podemos 
usar a cláusula USING: 

SELECT colunas FROM tabela1 INNER JOIN tabela2 USING (coluna);  

 

ATENÇÃO!!! 

O SQL ANSI especifica cinco tipos INNER, LEFT OUTER, RIGHT OUTER, FULL 
OUTER e CROSS. Mas alguns SGBDS podem implementar outros tipos a exemplo do 
SELF JOIN. 

INNER JOIN (ou simplemente JOIN)
• Retorna somente os registros que possuem valores relacionados em ambas as tabelas, isto é, 
as intersecções.

LEFT JOIN (ou LEFT OUTER JOIN)
• Retorna todos os registros da tabela da esquerda, e os registros relacionados da tabela da 
direita.

• Preenche campos não relacionados na tabela da direita com NULL.

RIGHT JOIN (ou RIGHT OUTER JOIN)
• Retorna todos os registros da tabela da direita, e os registros relacionados da tabela da 
esquerda.

• Preenche campos não relacionados na tabela da esquerda com NULL

FULL OUTER JOIN
• Retorna todos os registros, independente de relação. 
• Preenche campos não relacionados em qualquer das tabelas com NULL.

CROSS JOIN
• Retorna todos os registros da primeira relacionados com todos os registros da segunda.
• É o produto cartesiano.

SELF JOIN
• União de uma tabela com ela mesma.



________________________________________ 

 

56 

INNER JOIN (ou simplesmente JOIN) 

A cláusula INNER JOIN retorna somente os registros que possuem valores relacionados 
em ambas as tabelas, isto é, as intersecções. 

 

 

 

 

 

EXEMPLIFICANDO!!!  

Dada as tabelas Pessoas e Veículos a seguir: 

PESSOAS  VEICULOS	  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  

 

Vamos supor que você deseje identificar todas as pessoas que possuem veículos e exibir essa 
relação em uma única tabela de junção. Para isso, poderá usar a consulta a seguir: 

SELECT * FROM PESSOAS INNER JOIN VEICULOS ON PESSOAS.CPF = 
VEICULOS.CPF; OU 

SELECT * FROM PESSOAS JOIN VEICULOS ON PESSOAS.CPF = 
VEICULOS.CPF;  

O retorno dessa consulta será: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

 

Note que somente foram retornados os dados referentes as pessoas que possuem veículos, 
isto é, que possuem CPF nas duas tabelas. Neste exemplo, é possível notar que somente 
Fernando possui um veículo relacionado, que é o Carro de Placa SB-0001. 

Como as duas tabelas possuem os campos a serem relacionados com o mesmo nome, então 
as sintaxes a seguir podem ser utilizadas: 

SELECT * FROM PESSOAS INNER JOIN VEICULOS USING(CPF); OU 

SELECT * FROM PESSOAS JOIN VEICULOS USING(CPF); 

O resultado será exibido sem a repetição do campo CPF: 

NOME CPF ESTADO VEICULO PLACA  

Fernando 111.111. 111-11 PR Carro SB-0001  



________________________________________ 

 

57 

LEFT JOIN (ou LEFT OUTER JOIN) 

A cláusula LEFT JOIN retorna todos os registros da tabela da esquerda, e os registros 
relacionados da tabela da direita. Caso não haja valores relacionados na tabela da direita, os 
seus campos serão preenchidos com NULL. 

 

 

 

 

 

EXEMPLIFICANDO!!! 

Dada as tabelas Pessoas e Veículos a seguir: 

PESSOAS  VEICULOS	  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  
 

Vamos supor que você deseje identificar todas as pessoas e saber se elas posuem ou não 
veículos. Caso elas possuam, você deseja identificar qual o veículo que elas são proprietárias. 
Para isso, poderá usar a consulta a seguir: 

SELECT * FROM PESSOAS LEFT JOIN VEICULOS ON PESSOAS.CPF = 
VEICULOS.CPF; 

O retorno dessa consulta será:  

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

 

Note que foram retornadas todas as pessoas e, para as que possuem veículos, as informações 
dos veículos foram informadas nas colunas da direita. 

Para aquelas que não possuem veículos, os dados referentes a estes foram preenchidos com 
NULL. 

Neste exemplo, Fernando possui o veículo de Placa SB-0001, Guilherme não possui 
nenhum veículo. 

 

 

 



________________________________________ 

 

58 

 

RIGHT JOIN (ou RIGHT OUTER JOIN) 

A cláusula RIGHT JOIN retorna todos os registros da tabela da direita, e os registros 
relacionados da tabela da esquerda. Caso não haja valores relacionados na tabela da 
esquerda, os seus campos serão preenchidos com NULL. 

 

 

 

 

 

EXEMPLIFICANDO!!!  

Dada as tabelas Pessoas e Veículos a seguir: 

PESSOAS  VEICULOS  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  

 

Vamos supor que você deseje identificar todos os veículos e saber se eles posuem ou não 
proprietários. Caso eles possuam, você deseja identificar qual o proprietário deles. Para isso, 
poderá usar a consulta a seguir: 

SELECT * FROM PESSOAS RIGHT JOIN VEICULOS ON PESSOAS.CPF = 
VEICULOS.CPF; 

O retorno dessa consulta será: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

NULL NULL NULL NULL Carro SB-0002  

 

Note que foram retornados todos os veículos e, para as que possuem proprietários, as 
informações destes foram informadas nas colunas da esquerda. 

Para aquelas que não possuem proprietários, os dados referentes a estes foram preenchidos 
com NULL. 

Neste exemplo, o veículo de Placa SB-0001 está relacionado a Fernando, e veículo de Placa 
SB-0002 não possui pessoa relacionada. 

 

 



________________________________________ 

 

59 

FULL OUTER JOIN 

A cláusula FULL OUTER JOIN retorna todos os registros, relacionando aqueles que 
tiverem relação. Caso não haja valores relacionados na tabela da esquerda ou da direita, os 
seus campos serão preenchidos com NULL. 

 

 

 

 

 

EXEMPLIFICANDO!!!  

Dada as tabelas Pessoas e Veículos a seguir: 

PESSOAS  VEICULOS	  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  

 

Vamos supor que você deseje identificar todos os proprietários e veículos e as relações entre 
eles, caso haja. Para isso, poderá usar a consulta a seguir: 

SELECT * FROM PESSOAS FULL OUTER JOIN VEICULOS ON PESSOAS.CPF = 
VEICULOS.CPF; 

O retorno dessa consulta será:  

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

NULL NULL NULL NULL Carro SB-0002  

 

Note que foram retornados todas as pessoas e todos os veículos. 

Quando há uma relação entre uma pessoa e um veículo, esta é indicada no mesmo registro. 

Quando não há relação, os valores são preenchidos com NULL. 

Neste exemplo, Fernando possui o veículo de Placa SB-0001, Guilherme não possui veículo, 
e o veículo de Placa SB-002 não possui proprietário. 

 

 

 

 



________________________________________ 

 

60 

CROSS JOIN 

O CROSS JOIN realiza o produto cartesiano das tabelas, isto é, retorna todos os pares de 
linhas das duas relações de entrada (independentemente de ter ou não os mesmos valores 
em atributos comuns). A nova relação possui todos os atributos que compõem cada uma das 
relações que fazem parte da operação. 

 

ATENÇÃO!!! 

Muito cuidado para não pensar que CROSS JOIN (produto cartesiano) é similar ao FULL 
OUTER JOIN. Para explicar a diferença, vamos usar um exemplo. 

Dada as tabelas Pessoas e Veículos a seguir: 

PESSOAS  VEICULOS	  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  

 

O CROSS JOIN (produto cartesiano) trará o seguinte resultado: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Fernando 111.111.111-11  PR NULL Carro SB-0002  

Guilherme 222.222.222-22 SP 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL Carro SB-0002  

 

Já o FULL OUTER JOIN trará o seguinte resultado: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

NULL NULL NULL NULL Carro SB-0002  

 

Observe que no CROSS JOIN, há duas linhas para Fernando, pois há uma linha para cada 
veículo, mesmo para o veículo que não é dele. Já no FULL OUTER JOIN, há apenas uma 
linha, pois as relações são consideradas e, portanto, Fernando só é associado ao seu veículo. 



________________________________________ 

 

61 

SELF JOIN 

A cláusula SELF JOIN é similar a um JOIN, contudo relaciona uma tabela com ela mesma. 

 

 

 

 

 

EXEMPLIFICANDO!!!  

Dada a tabela Pessoas a seguir: 

PESSOAS  

NOME  CPF ESTADO INDICADO  

Fernando 111.111.111-11  PR NULL  

Guilherme 222.222.222-22  SC 111.111.111-11  

 

Vamos supor que você deseje identificar as pessoas que foram indicadas por outras. Para 
isso, poderá usar a consulta a seguir: 

SELECT A.NOME, B.NOME AS INDICADO_POR FROM PESSOAS A JOIN 
PESSOAS B ON A.INDICADO = B.CPF; 

O retorno dessa consulta será: 

NOME  INDICADO_POR  

GUILHERME FERNANDO   

 

Note que somente foram retornados os dados referentes as pessoas que foram indicadas por 
alguém.  

Neste exemplo, Guilherme foi indicado por Fernando. 

 

 

 

 

 

 

 

 

 



________________________________________ 

 

62 

DICA DO PROFESSOR!!!  

CONTAGEM DE LINHAS NOS RESULTADOS DE CONSULTAS COM JOINS 

Um tipo de questão relativamente comum é o que solicita a contagem de linhas em 
comandos SQL. Para os comandos em geral, você precisará avaliar o resultado, mas existem 
alguns bizus para avaliar a quantidade de linhas dos comandos com junções. São elas: 

§ INNER JOIN: exato número de linhas que possuem correspondência. 

§ LEFT JOIN: no mínimo o número de linhas da tabela da esquerda. Linhas 
adicionais aparecem se houver correspondências múltiplas na tabela da direita. 

§ RIGHT JOIN: no mínimo o número de linhas da tabela da direita. Linhas adicionais 
aparecem se houver correspondências múltiplas na tabela da esquerda. 

§ FULL OUTER JOIN: no mínimo o número de linhas da maior tabela e no máximo 
a soma total de linhas das tabelas. Pode-se usar a soma das linhas das tabelas menos 
o número de linhas relacionadas. 

§ CROSS JOIN: multiplicação do número de linhas das tabelas envolvidas. 

 

*IMPORTANTE: qualquer condição adicional no WHERE ou nos filtros aplicados às 
tabelas pode alterar a contagem de linhas. 

 

Vamos analisar um exemplo com base nas tabelas a seguir: 

PESSOAS  VEICULOS	  

NOME  CPF ESTADO  CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR  111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22  SC  NULL Carro SB-0002  

Maria 333.333.333-33 CE      

 

Os retornos para cada um dos tipos de JOIN será: 

INNER JOIN: 1 linha (apenas a linha que tem correspondência) 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

 

LEFT JOIN: 3 linhas (no mínimo o número de linhas da tabela da esquerda).  

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

Maria 333.333.333-22 CE NULL NULL NULL  



________________________________________ 

 

63 

 

CONTINUAÇÃO... 

Mas como assim “no mínimo”? Isso mesmo, pois pode acontecer de haver mais de um 
registro relacionado. Imagine que exista um terceiro veículo com valores 111.111.111-11, 
Carro, SB-0003. Nesse caso, o resultado do LEFT JOIN teria 4 linhas, sendo duas linhas 
para Fernando e seus respectivos veículos: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0002  

Guilherme 222.222.222-22 SP NULL NULL NULL  

Maria 333.333.333-22 CE NULL NULL NULL  

 

RIGHT JOIN: 2 linhas (no mínimo o número de linhas da tabela da direita). 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

NULL NULL NULL NULL Carro SB-0002  

O mesmo raciocínio do “no mínimo” serve também para o Right Join. 

 

FULL OUTER JOIN: 4 linhas (entre 3, que é o número de linhas da maior tabela e 5, que 
é o somatório de linhas das duas tabelas) (5-1, somatório de linhas – linhas relacionadas).  

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

Maria 333.333.333-22 CE NULL NULL NULL  

NULL NULL NULL NULL Carro SB-0002  

 

No caso do FULL OUTER JOIN, temos um intervalo de números de linhas possíveis. 
Vamos avaliar os extremos casos para entender esse intervalo.  

Extremo 1: todos os registros relacionados. Nesse caso, teremos o menor número de linhas 
possível que é igual ao número de linhas da maior tabela envolvida. No exemplo, temos uma 
tabela com 3 linhas e outra com 2 linhas, logo teremos 3 linhas no resultado. Por exemplo, 
se o Carro de Placa SB-0002 fosse de Maria (CPF = 333.333.333-33), o resultado seria: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL NULL NULL  

Maria 333.333.333-22 CE NULL Carro SB-0002  



________________________________________ 

 

64 

 

CONTINUAÇÃO... 

Extremo 2: nenhum registro relacionado. Nesse caso, teremos o maior número de linhas 
possível que é igual ao somatório da quantidade de linhas das tabelas envolvidas. No 
exemplo, temos uma tabela com 3 linhas e outra com 2 linhas, logo teremos 3+2 = 5 linhas 
no resultado. Por exemplo, se o Carro de Placa SB-0001 tivesse o CPF NULL, teríamos: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR NULL NULL NULL  

Guilherme 222.222.222-22 SP NULL NULL NULL  

Maria 333.333.333-22 CE NULL NULL NULL  

NULL NULL NULL NULL Carro SB-0001  

NULL NULL NULL NULL Carro SB-0002  

 

CROSS JOIN: 6 linhas (3x2, multiplicação do número de linhas das tabelas envolvidas): 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Fernando 111.111.111-11  PR NULL Carro SB-0002  

Guilherme 222.222.222-22 SP 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL Carro SB-0002  

Maria 333.333.333-22 CE 111.111.111-11 Carro SB-0001  

Maria 333.333.333-22 CE NULL Carro SB-0002  

 

Essas regrinhas irão te ajudar na resolução de questões para contagem de linhas com 
junções, mas lembre-se sempre de avaliar as outras condições. Por exemplo, o seguinte 
comando terá como resultado 4 linhas e não 6: 

SELECT * FROM PESSOAS CROSS JOIN VEICULOS WHERE PESSOA.ESTADO <> ‘CE’; 

Nesse comando, perceba que houve um filtro na tabela PESSOA, que seleciona apenas as 
pessoas que não sejam do Estado ‘CE, logo, Maria não será considerada no CROSS JOIN e 
o resultado será: 

NOME  CPF ESTADO CPF  VEICULO PLACA  

Fernando 111.111.111-11  PR 111.111.111-11 Carro SB-0001  

Fernando 111.111.111-11  PR NULL Carro SB-0002  

Guilherme 222.222.222-22 SP 111.111.111-11 Carro SB-0001  

Guilherme 222.222.222-22 SP NULL Carro SB-0002  

 

 



________________________________________ 

 

65 

29- (FGV - 2024 – CGE-PB – Auditor de Contas Públicas) Observe as tabelas A e B 
a seguir, que possuem, respectivamente, 9 e 10 registros. 

   

Após executar diferentes tipos de junções entre essas tabelas, o total de registros retornados 
em cada caso, sendo eles INNER JOIN, RIGHT JOIN, FULL OUTER JOIN, CROSS 
JOIN e LEFT JOIN, é, respectivamente: 

a) 9, 10, 13, 90 e 9; 

b) 6, 10, 13, 90 e 9; 

c) 6, 10, 10, 90 e 9; 

d) 6, 10, 13, 19 e 9; 

e) 6, 12, 13, 90 e 9. 

Resolução:  

A contagem de linhas do resultado de junções pode ser feita com base nas seguintes regras: 

§ INNER JOIN: exato número de linhas que possuem correspondência.  

Na questão são 6 linhas, pois é exatamente o número de linhas relacionadas pelo ID 
nas tabelas, quais sejam IDs 1, 2, 3, 5, 6 e 7. 

§  LEFT JOIN: no mínimo o número de linhas da tabela da esquerda. Linhas 
adicionais aparecem se houver correspondências múltiplas na tabela da direita.  

Na questão são 9 linhas, que é o número de linhas da tabela da esquerda. Como não 
há nenhum ID repetido na tabela da direita, então não há mais de uma linha para 
um mesmo valor da tabela da esquerda. 

§ RIGHT JOIN: no mínimo o número de linhas da tabela da direita. Linhas adicionais 
aparecem se houver correspondências múltiplas na tabela da esquerda. 

Na questão são 10 linhas, que é o número de linhas da tabela da direita. Como não 
há nenhum ID repetido na tabela da esquerda, então não há mais de uma linha para 
um mesmo valor da tabela da direita. 

§ FULL OUTER JOIN: no mínimo o número de linhas da maior tabela e no máximo 
a soma total de linhas das tabelas. Pode-se usar a soma das linhas das tabelas menos 
o número de linhas relacionadas. 

Logo, temos 19 linhas no total, sendo 6 relacionadas. Portanto, 13 linhas. 



________________________________________ 

 

66 

§ CROSS JOIN: multiplicação do número de linhas das tabelas envolvidas. 

Na questão são 90 linhas, 10 x 9. 

Na ordem desejada: 6 (INNER), 10 (RIGHT), 13 (FULL), 90 (CROSS) e 9 (LEFT). 

Gabarito: Letra B. 

 

30- (FGV - 2024 –TJ-MS – Técnico de Nível Superior) João está escrevendo uma 
consulta que envolve várias tabelas e precisa garantir que todas as suas linhas sejam 
incluídas no resultado, mesmo que não haja correspondências entre elas. 

Para tanto, João deverá utilizar o seguinte operador de junção: 

a) LEFT JOIN; 

b) INNER JOIN; 

c) RIGHT JOIN; 

d) CROSS JOIN; 

e) FULL OUTER JOIN. 

Resolução:  

Vamos analisar cada um dos itens: 

a) Incorreto: LEFT JOIN retorna todos os registros da tabela da esquerda, e os registros 
relacionados da tabela da direita. Logo, não garante que todas as linhas serão incluídas no 
resultado, pois não trará os registros da tabela da direita que não tiverem relação com os 
registros da tabela da esquerda. 

b) Incorreto: INNER JOIN retorna somente os registros relacionados, logo os registros 
de ambas as tabelas que não tiverem relação não serão retornados. 

c) Incorreto: RIGHT JOIN retorna todos os registros da tabela da direita, e os registros 
relacionados da tabela da esquerda. Logo, não garante que todas as linhas serão incluídas 
no resultado, pois não trará os registros da tabela da esquerda que não tiverem relação com 
os registros da tabela da direita. 

d) Incorreto: CROSS JOIN retorna o produto cartesiano, ou seja, todas as combinacões de 
linhas das tabelas de entrada. Embora esse comando garanta que todas as linhas sejam 
retornadas, ele não é o mais adequado para o objetivo da questão, pois não exibirá as 
relações entre as linhas quando elas existirem, trazendo um simples cruzamento de todas 
as linhas. 

e) Correto: FULL OUTER JOIN retorna todos os registros das tabelas independente de 
relação, trazendo na mesma linha aqueles que tiverem relação. 

Gabarito: Letra E. 

 

 



________________________________________ 

 

67 

31- (CESPE / CEBRASPE - 2023 – DATAPREV - Analista de Processamento) Em 
relação às linguagens de banco de dados SQL, DDL e DML, julgue o item a seguir. 

Somente são possíveis os seguintes quatro tipos de JOIN em SQL, segundo o padrão ANSI: 
INNER JOIN, LEFT JOIN, RIGHT JOIN e CROSS JOIN. 

Resolução:  

O SQL ANSI define também o FULL OUTER JOIN. Ou seja, são cinco tipos. 

Gabarito: Errado. 

 

32- (CESPE / CEBRASPE - 2022 - TRT 8ª Região - Técnico Judiciário) Considere-
se que as tabelas Produto e Categoria, a seguir, tenham sido implementadas em um banco 
de dados SQL. 

Produto 

idProduto DeProduto idCategoria ValorProduto 

1 Arroz 2 9 

2 Feijão 2 9 

3 Detergente 1 7 

4 Sabão 1 7 

5 Escova 1 7 

 

Categoria 

idCategoria DeCategoria 

1 Limpeza 

2 Alimentos 

 

Considere-se, ainda, que o script SQL a seguir tenha sido executado no Postgres12. 

SELECT C.DeCategoria, AVG(P.ValorProduto) total  

FROM Produto P 

LEFT OUTER JOIN Categoria C  

ON P.idCategoria = C.idCategoria 

GROUP BY P.idCategoria 

HAVING total > 7; 

 

 



________________________________________ 

 

68 

Assinale a opção que contenha a tabela com o resultado correto do script supracitado. 

a) 

DeCategoria total 

Alimentos 9 

b) 

DeCategoria total 

Alimentos 9 

Limpeza 7 

c) 

DeCategoria total 

Alimentos 18 

Limpeza 21 

d) 

DeCategoria total 

Alimentos 18 

e) 

DeCategoria total 

Limpeza 21 

Alimentos 18 

Resolução:  

Vamos analisar o comando passo a passo: 

SELECT C.DeCategoria, AVG(P.ValorProduto) total  

-- selecionar os atributos DeCategoria da tabela C e a média do ValorProduto da tabela P. 

FROM Produto P LEFT OUTER JOIN Categoria C  

-- a partir do LEFT JOIN das tabelas Produto e Categoria. 

ON P.idCategoria = C.idCategoria 

-- com base na condição de igualdade entre os idCategoria. 

GROUP BY P.idCategoria 

-- e agrupar os resultados por idCategoria. 

HAVING total > 7; 

-- desde que o total para o grupo seja maior que 7 

 



________________________________________ 

 

69 

Vamos agora entender a execução do comando: 

1. O comando combina as tabelas Produto e Categoria usando a condição P.idCategoria = 
C.idCategoria. Como é um LEFT OUTER JOIN, todas as linhas da tabela Produto são 
mantidas, mesmo que não tenham correspondência na tabela Categoria. A tabela resultante 
do JOIN é:  

idProduto DeProduto idCategoria ValorProduto idCategoria DeCategoria 

1 Arroz 2 9 2 Alimentos 

2 Feijão 2 9 2 Alimentos 

3 Detergente 1 7 1 Limpeza 

4 Sabão 1 7 1 Limpeza 

5 Escova 1 7 1 Limpeza 

 

2. A cláusula GROUP BY P.idCategoria agrupa os produtos por idCategoria. Em cada 
grupo, a função AVG(P.ValorProduto) é usada para calcular a média dos valores dos 
produtos. O resultado desse agrupamento é: 

idCategoria DeCategoria AVG(P.valorProduto) 

1 Limpeza 7 

2 Alimentos 9 

 

3. A cláusula HAVING total > 7 filtra os grupos onde a média dos valores dos produtos é 
maior que 7. Nesse caso: 

• O grupo "Limpeza" (média = 7) é eliminado, pois não atende à condição. 

• O grupo "Alimentos" (média = 9) é mantido. 

idCategoria DeCategoria AVG(P.valorProduto) 

1 Alimentos 9 

 

4. A consulta retorna as categorias que passaram pelo filtro HAVING, junto com a média 
dos valores dos produtos. 

DeCategoria total 

Alimentos 9 

Gabarito: Letra A. 

 

  



________________________________________ 

 

70 

2.1.8 Operadores de conjuntos 

O SQL permite trabalhar no resultado de duas consultas através dos operadores UNION 
(e UNION ALL), INTERSECT e EXCEPT. 

 

UNION e UNION ALL 

O operador UNION combina os resultados de duas ou mais consultas, retornando todas 
as linhas pertencentes a todas as consultas envolvidas na execução. Para utilizar o UNION, 
o número e a ordem das colunas precisam ser idênticos em todas as consultas e os tipos de 
dados precisam ser compatíveis.  

 

Existem dois tipos de operador UNION, sendo eles UNION e UNION ALL. 

§ O operador UNION, por padrão, executa o equivalente a um SELECT 
DISTINCT. Em outras palavras, ele combina o resultado de execução das duas 
consultas e então executa um SELECT DISTINCT a fim de eliminar as linhas 
duplicadas. Este processo é executado mesmo que não haja registros duplicados.  

A sintaxe básica é: 

SELECT colunas FROM tabela1  

UNION 

SELECT colunas FROM tabela2;  

 
§ O operador UNION ALL tem a mesma funcionalidade do UNION, porém, não 

executa o SELECT DISTINCT no resultado e apresenta todas as linhas, 
inclusive as linhas duplicadas. 
A sintaxe básica é: 

SELECT colunas FROM tabela1  

UNION ALL 

SELECT colunas FROM tabela2;  

 

ATENÇÃO!!!  

As colunas de ambas as consultas não precisam ser exatamente as mesmas. Elas só precisam 
aparecer na mesma quantidade e ordem. E cada coluna deve ter o mesmo tipo de dado. 

Assim, na primeira consulta podemos ter uma coluna de cadeia de caracteres chamada 
“nome_cliente” e na segunda consulta podemos ter uma coluna de cadeia de caracteres 
chamada “nome_fornecedor”. Ainda assim, será possível realizar a união, pois elas possuem 
o mesmo tipo de dados e estão na mesma ordem no conjunto de colunas de cada subconsulta. 

 

 



________________________________________ 

 

71 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
E a tabela Fornecedores a seguir: 

IDFornecedor Nome_Fornecedor Nome_Contato Endereco Cidade CEP Pais 

1 Exotic Liquid Charlotte 
Cooper 

49 Gilbert 
St. 

London EC1 
4SD 

UK 

2 New Orleans Cajun 
Delights 

Shelley Burke P.O. Box 
78934 

New 
Orleans 

70117 USA 

3 Grandma Kelly's 
Homestead 

Regina Murphy 707 Oxford 
Rd. 

Ann 
Arbor 

48104 USA 

 

A consulta a seguir irá retornar as cidades de ambas as tabelas, comuns ou não: 

SELECT Cidade FROM Clientes UNION SELECT Cidade FROM Fornecedores; 

Cidade 

Berlin 

México D.F. 

London 

New Orleans 

Ann Arbor 

Como a cláusula UNION realiza um SELECT DISTINCT implícito, então México D.F 
não foi retornado duas vezes. Se ao invés de UNION, tivessemos usado UNION ALL, o 
resultado seria: 

Cidade 

Berlin 

México D.F. 

México D.F. 

London 

New Orleans 

Ann Arbor 

 

Linhas da 1ª consulta, excluindo a repetição de México D.F. 

Linhas da 2ª consulta 

Linhas da 1ª consulta, incluindo a repetição de México D.F. 

Linhas da 2ª consulta 



________________________________________ 

 

72 

INTERSECT 

O operador INTERSECT permite a intersecção entre consultas, retornando as linhas 
que existem tanto na primeira quanto na segunda consulta. INTERSECT possui um 
SELECT DISTINCT implícito, logo não retorna linhas repetidas. 

A sintaxe básica é: 

SELECT colunas FROM tabela1  

INTERSECT 

SELECT colunas FROM tabela2;  

 

EXEMPLIFICANDO!!!  

Dada a tabela ClientesA a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
E a tabela ClientesB a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 
 

Alfreds 
Futterkiste 

Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 Around the Horn Thomas Hardy 120 Hanover 
Sq. 

London WA1 
1DP 

England 

3 Berglunds 
snabbköp 

Christina 
Berglund 

Berguvsvägen 
8 

Luleå S-958 22 Sweden 

 

A consulta a seguir irá retornar as cidades que estão presentes nas duas tabelas ao mesmo 
tempo: 

SELECT Cidade FROM ClientesA INTERSECT SELECT Cidade FROM ClientesB 
ORDER BY Cidade; 

Cidade 

Berlin 

 

Somente as cidades que são retornadas nas duas consultas vão no resultado. No caso, 
somente a cidade de Berlin.  

 

Linhas que estão em ambas 



________________________________________ 

 

73 

EXCEPT 

O operador EXCEPT retorna os registros que aparecem na primeira consulta e não 
aparecem na segunda. EXCEPT possui um SELECT DISTINCT implícito, logo não 
retorna linhas repetidas. 

A sintaxe básica é: 

SELECT colunas FROM tabela1  

EXCEPT 

SELECT colunas FROM tabela2;  

 

EXEMPLIFICANDO!!!  

Dada a tabela ClientesA a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
E a tabela ClientesB a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 
 

Alfreds 
Futterkiste 

Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 Around the Horn Thomas Hardy 120 Hanover 
Sq. 

London WA1 
1DP 

England 

3 Berglunds 
snabbköp 

Christina 
Berglund 

Berguvsvägen 
8 

Luleå S-958 22 Sweden 

 

A consulta a seguir irá retornar as cidades que estão presentes na primeira consulta, mas 
não na segunda: 

SELECT Cidade FROM ClientesA EXCEPT SELECT Cidade FROM ClientesB 
ORDER BY Cidade; 

Cidade 

México D.F. 

 

Perceba que não foi retornada uma linha para Belin, pois ela está também na segunda 
consulta.  

 

Linha somente na 1ª consulta 



________________________________________ 

 

74 

As operações de união, intersecção e diferença podem ser representadas em diagramas: 

 

 

O quadro a seguir apresenta um resumo desses operadores: 

OPERADOR RETORNO 

UNION Todas as linhas pertencentes as consultas envolvidas, sem as repetições. 

UNION ALL Todas as linhas pertencentes as consultas envolvidas, incluindo as repetições. 

INTERSECT Linhas que estão tanto na primeira quanto na segunda consulta. Intersecção, 
sem repetições. 

EXCEPT Linhas que estão na primeira, mas não estão na segunda, sem repetições. 

Esquema 13 – Operadores de conjuntos. 

 

33- (CESPE / CEBRASPE - 2023 – DATAPREV - Analista de Tecnologia da 
Informação) Com relação a SQL, julgue o item a seguir. 

O comando UNION é utilizado para combinar as linhas de duas tabelas, mesmo que as 
colunas dessas tabelas sejam de tipos e tamanhos diferentes. 

Resolução:  

Embora as colunas não precisem ser exatamente as mesmas nas consultas com os 
operadores de conjuntos (UNION, INTERSECT, EXCEPT), elas precisam aparecer na 
mesma quantidade, na mesma ordem e serem do mesmo tipo. 

Por exemplo, na primeira consulta podemos ter uma coluna de cadeia de caracteres chamada 
“nome_cliente” e na segunda consulta podemos ter uma coluna de cadeia de caracteres 
chamada “nome_fornecedor”. Ainda assim, será possível realizar a união, pois elas possuem 
o mesmo tipo de dados e estão na mesma ordem no conjunto de colunas de cada subconsulta. 
Agora, se a primeira coluna da primeira consulta for do tipo data, por exemplo, 
“data_nascimento” e a primeira coluna da segunda consulta for do tipo textual, por exemplo, 
“mês do nascimento”, então não será possível realizar a união dessa forma. 

Gabarito: Errado. 

 

União 

A Ս B 

Intersecção 

A Ո B 

Diferença 

A - B 



________________________________________ 

 

75 

34- (CESPE/CEBRASPE - 2022 - TCE-SC- Auditor Fiscal de Controle Externo) 

 

Considerando as tabela1 e tabela2 apresentadas, julgue o item que se segue, referentes a 
banco de dados. 

Considere que o comando a seguir seja executado sem erro. 

select campo from tabela2 

except 

select campo from tabela1 

Nesse caso, o resultado obtido será a tabela seguinte. 

 

Resolução: 

Vamos interpretar o comando parte a parte: 

select campo from tabela2 -- seleção dos valores de campo da tabela2 

except – com exceção dos valores que constem na consulta a seguir 

select campo from tabela1-- seleção do valores de campo da tabela1 

Ou seja, o resultado será os valores da tabela2 (5, 5, 7, 8, 8, 9) que não estão na tabela1 (0, 
2, 3, 3, 4, 4, 6, 7), logo: (5, 5, 8, 8, 9). A cláusula EXCEPT possui um DISTINCT implícito 
e, portanto, os valores repetidos não serão retornados. Assim, o retorno correto seria: 

campo 

5 

8 

9 

Gabarito: Errado. 



________________________________________ 

 

76 

35- (FGV - 2018 - Prefeitura de Niterói - RJ - Analista de Políticas Públicas e 
Gestão Governamental - Gestão de Tecnologia) A questão deve ser respondida a partir 
das tabelas de banco de dados t1 e t2, a seguir. 

 

Analise o comando SQL exibido abaixo. 

select * from T1 where C > 5 

UNION 

select * from T1 where C <= 5 

A execução desse comando no MS SQL Server produz um resultado que contém, além da 
linha de títulos, n linhas. 

Assinale o valor de n. 

a) 3   b) 4  c) 5  d) 6  e) 8 

Resolução: 

Vamos analisar o comando: 

select * from T1 where C > 5 

-- seleção dos registros da tabela T1 cujo valor de C seja maior que 5. 

-- Logo, não será retornado nenhum registro, pois o C máximo da tabela é 5. 

UNION 

-- cláusula para unir os resultados, eliminando as duplicações implicitamente. 

select * from T1 where C <= 5 

-- seleção dos registros da tabela T1 cujo valor de C seja menor ou igual a 5. 

-- Logo, serão retornados os seguintes valores: 

A  B  C 

1 2 4 

2 3 5 

4 2 4 

Em relação ao registro com o valor C igual a NULL, vale ressaltar que NULL não é menor, 
maior ou igual a 5, por isso não é retornado em nenhuma das duas partes da consulta. 

Logo, temos 3 registros sendo retornados. 

Gabarito: Letra A.  



________________________________________ 

 

77 

2.1.9 Consultas aninhadas 

Em alguns casos, precisamos realizar uma consulta que é comparada com o resultado de 
outra consulta. Aqui teremos o uso de uma consulta dentro de outra consulta ou consulta 
aninhada. A consulta que é realizada dentro de outra é chamada subconsulta.  

Uma subconsulta, consulta interna ou seleção interna é uma consulta que está aninhada 
dentro de uma instrução SELECT, INSERT, UPDATE ou DELETE ou em outra 
subconsulta. Uma subconsulta pode ser usada em qualquer lugar em que é permitida uma 
expressão. 

As subconsultas podem ser comparadas com a consulta externa com o uso de operadores 
IN (ou NOT IN), ANY, ALL e EXISTS (ou NOT EXISTS), além dos operadores básicos 
=, <, <=, >, >=, <>.  

 

EXEMPLIFICANDO!!!  

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

5 Suco 2 2 Litros 8 

 
E a tabela Produtos Líquidos a seguir: 

ProdutoID Nome_do_Produto 

1 Leite 

5 Suco 

 
Vamos supor que você deseje consultar o preço médio de seus produtos líquidos. Para isso, 
você pode fazer uma consulta aninhada: 

SELECT AVG(Preco) FROM Produtos WHERE ProdutoID IN (SELECT ProdutoID FROM 
ProdutosLiquidos); 

O retorno dessa consulta será 5,5, pois a subconsulta retornará os ids 1 e 5 que serão 
utilizados pela consulta externa para fazer a média dos preços. 

 

 

 

 

 



________________________________________ 

 

78 

ANY e ALL 

Os operadores ANY e ALL permitem realizar uma comparação entre o valor de uma única 
coluna e um conjunto de outros valores. 

• ANY: TRUE se QUALQUER um dos valores da subconsulta atender a condição. 

SELECT colunas FROM tabela WHERE coluna operador ANY (subconsulta); 

 

• ALL: TRUE se TODOS os valores da subconsulta atenderem a condição. 

SELECT colunas FROM tabela WHERE coluna operador ALL (subconsulta); 

* O operador deve ser um dos operadores padrão de comparação: =, <>, !=, >, >=, <, ou <=. 

 

EXEMPLIFICANDO!!!  

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

5 Suco 2 2 Litros 8 

 
E a tabela Pedidos a seguir: 

PedidoID ProdutoID Data Quantidade MeioDeEntrega 

1 1 15/01/2025 10 1 

2 2 20/01/2025 15 2 

3 1 24/01/2025 20 2 

4 3 27/01/2025 25 1 

5 3 28/01/2025 30 1 

 
Vamos supor que você deseje consultar somente os produtos que já foram pedidos alguma 
vez. Para isso, você pode fazer uma consulta aninhada: 

SELECT Nome_do_Produto FROM Produtos WHERE ProdutoID = ANY (SELECT 
ProdutoID FROM Pedidos); 

O retorno dessa consulta será: 

Nome_do_Produto 

Leite 

Banana 

Melancia 



________________________________________ 

 

79 

CONTINUAÇÃO... 

Vamos explicar usando um passo a passo com os recortes das tabelas envolvidas: 

1. Isolando o primeiro valor da tabela Produto e comparando o seu ProdutoID com os 
retornados na subconsulta (que são os ProdutoID da tabela Pedido): 

ProdutoID Nome_do_Produto  PedidoID ProdutoID 

1 Leite  1 1 

2 Banana  2 2 

3 Melancia  3 1 

4 Pão  4 3 

5 Suco  5 3 

 

Como existe algum valor que cumpra a condição, então o ANY retorna TRUE, e portanto 
o primeiro produto será selecionado. 

2. Os produtos 2 e 3 também irão cumprir a condição. 

3. Agora vamos analisar o que acontece com o produto 4: 

ProdutoID Nome_do_Produto  PedidoID ProdutoID 

1 Leite  1 1 

2 Banana  2 2 

3 Melancia  3 1 

4 Pão  4 3 

5 Suco  5 3 

 

 Nesse caso, não há nenhum ProdutoID que faça correspondência com o externo. Logo, o 
ANY retorna FALSE e o produto 4 não é retornado. 

4. O produto 5 também não será retornado. Por isso, o resultado conterá apenas Leite, 
Banana e Melancia. 

 

Agora vamos supor que você deseje encontrar produtos que nunca foram pedidos. Uma 
possibilidade é usar a seguinte consulta: 

SELECT Nome_do_Produto FROM Produtos WHERE ProdutoID <> ALL (SELECT 
ProdutoID FROM Pedidos); 

O retorno dessa consulta será: 

Nome_do_Produto 

Pão 

Suco 

1=1? SIM 

4=1? NÃO 

4=2? NÃO 

4=1? NÃO 

4=3? NÃO 

4=3? NÃO 



________________________________________ 

 

80 

 

CONTINUAÇÃO... 

Vamos explicar o passo a passo:  

1. Isolando o primeiro valor da tabela Produto e comparando o seu ProdutoID com os 
retornados na subconsulta (que são os ProdutoID da tabela Pedido): 

ProdutoID Nome_do_Produto  PedidoID ProdutoID 

1 Leite  1 1 

2 Banana  2 2 

3 Melancia  3 1 

4 Pão  4 3 

5 Suco  5 3 

 

Nesse caso, nem todos os valores retornados na subconsulta cumprem a condição e, por 
isso, o ALL retorna FALSE. Logo, o primeiro elemento não será retornado na consulta 
externa. 

2. Para os produtos 2 e 3 acontecerá o mesmo. 

3. Agora vamos analisar o que acontece com o produto 4. 

ProdutoID Nome_do_Produto  PedidoID ProdutoID 

1 Leite  1 1 

2 Banana  2 2 

3 Melancia  3 1 

4 Pão  4 3 

5 Suco  5 3 

 

Nesse caso, todos os valores retornados na subconsulta cumprem a condição de serem 
diferentes do valor externo e, portanto, o ALL retorna TRUE e o produto 4 será retornado 
pela consulta externa. 

4. O produto 5 também será retornado. Por isso, o retorno da consulta será Pão e Suco. 

 

 

  

1<>1? NÃO 

1<>2? SIM 

1<>1? NÃO 

1<>3? SIM 

1<>3? SIM 

4<>1? SIM 

1<>2? SIM 

4<>1? SIM 

1<>3? SIM 

1<>3? SIM 



________________________________________ 

 

81 

EXISTS (e NOT EXISTS) 

A cláusula EXISTS faz uma verificação se existe algum resultado para a subconsulta 
informada. Caso haja, o resultado da consulta principal é exibido.  É muito comum sua 
utilização quando se deseja trazer resultados onde um valor específico existe dentro de 
outra tabela. A sintaxe básica é: 

SELECT colunas FROM tabela WHERE EXISTS (SELECT colunas FROM tabela 
WHERE condicão); 

Da mesma forma, também há a cláusula NOT EXISTS, somente retorna o resultado da 
consulta principal, se não houver nenhum resultado para a subconsulta. 

EXEMPLIFICANDO!!! 

Considere as tabelas a seguir: 

PRODUTO  VENDA_PRODUTO 

id nome preco id_categoria  id id_produto valor data 

1 Bola 35.00 1  1 1 35.00 15/05/2018 

2 Patinete 120.00 1  2 1 35.00 15/06/2018 

3 Carrinho 15.00 1  3 1 35.00 15/07/2018 

4 Skate 296.00 1  4 2 120.00 15/07/2018 

5 Notebook 3500.00 2  5 2 120.00 14/07/2018 

6 Monitor LG 19 450.00 2  6 3 15.00 15/07/2018 

7 O Diário de Anne Frank 45.00 3  7 7 45.00 15/07/2018 

8 O dia do Curinga 65.00 3  8 8 65.00 15/07/2018 

9 O mundo de Sofia 48.00 3  9 8 65.00 16/07/2018 

10 Através do Espelho 38.00 3  10 9 48.00 16/07/2018 

     11 5 3500.00 16/07/2018 

     12 5 3500.00 16/07/2018 

     13 6 450.00 16/07/2018 

Suponha que seja necessário trazer em uma consulta na tabela de produtos, todos aqueles 
registros que tiveram alguma venda. Para isso podemos utilizar o EXISTS, além de testar 
se a condição é verdadeira, traz como retorno os dados da consulta. A sintaxe a seguir 
poderá ser utilizada: 

SELECT p.id, p.nome FROM produto p WHERE EXISTS (SELECT v.id_produto FROM 
venda_produto v WHERE v.id_produto = p.id); 

Vamos analisar o comando por partes: 

SELECT p.id, p.nome FROM produto p  

-- seleção do id e nome da tabela produto 

WHERE EXISTS  

-- a consulta só será efetuada para o registro que cumprir a condição da subconsulta 

(SELECT v.id_produto FROM venda_produto v WHERE v.id_produto = p.id); 

-- isto é, somente se o id do produto constar na tabela venda_produto. 



________________________________________ 

 

82 

CONTINUAÇÃO... 

O resultado desse comando será:  
id nome 

1 Bola 

2 Patinete 

3 Carrinho 

5 Notebook 

6 Monitor LG 19 

7 O Diário de Anne Frank 

8 O dia do Curinga 

9 O mundo de Sofia 

 

Vamos entender o que aconteceu no comando passo a passo: 

1. Isolando o primeiro produto e comparando-o com todos os resultados da subconsulta 
com base na condição WHERE, ou seja, verificar se o valor do seu id é igual ao valor de 
algum id da tabela venda_produto (v.id_produto = p.id). 

PRODUTO  VENDA_PRODUTO 

id nome preco id_categoria  id id_produto valor data 

1 Bola 35.00 1  1 1 35.00 15/05/2018 

2 Patinete 120.00 1  2 1 35.00 15/06/2018 

3 Carrinho 15.00 1  3 1 35.00 15/07/2018 

4 Skate 296.00 1  4 2 120.00 15/07/2018 

5 Notebook 3500.00 2  5 2 120.00 14/07/2018 

6 Monitor LG 19 450.00 2  6 3 15.00 15/07/2018 

7 O Diário de Anne Frank 45.00 3  7 7 45.00 15/07/2018 

8 O dia do Curinga 65.00 3  8 8 65.00 15/07/2018 

9 O mundo de Sofia 48.00 3  9 8 65.00 16/07/2018 

10 Através do Espelho 38.00 3  10 9 48.00 16/07/2018 

     11 5 3500.00 16/07/2018 

     12 5 3500.00 16/07/2018 

     13 6 450.00 16/07/2018 

Como existe um valor correspondente, então o EXISTS retorna TRUE, e o SELECT será 
executado para essa primeira linha de id = 1.  

2. Perceba que com 2 e 3 acontecerá a mesma coisa. Ilustrando com o 2: 

PRODUTO  VENDA_PRODUTO 

id nome preco id_categoria  id id_produto valor data 

1 Bola 35.00 1  1 1 35.00 15/05/2018 

2 Patinete 120.00 1  2 1 35.00 15/06/2018 

3 Carrinho 15.00 1  3 1 35.00 15/07/2018 

4 Skate 296.00 1  4 2 120.00 15/07/2018 

 

1=1? SIM 

2=1? NÃO 

2=1? NÃO 

2=1? NÃO 

2=2? SIM 

 

 

 

 



________________________________________ 

 

83 

CONTINUAÇÃO... 

O fato é que mesmo que alguns valores não cumpram a condição, basta que um cumpra.  

3. Agora vamos analisar o que acontecerá na linha do produto 4. 

PRODUTO  VENDA_PRODUTO 

id nome preco id_categoria  id id_produto valor data 

1 Bola 35.00 1  1 1 35.00 15/05/2018 

2 Patinete 120.00 1  2 1 35.00 15/06/2018 

3 Carrinho 15.00 1  3 1 35.00 15/07/2018 

4 Skate 296.00 1  4 2 120.00 15/07/2018 

5 Notebook 3500.00 2  5 2 120.00 14/07/2018 

6 Monitor LG 19 450.00 2  6 3 15.00 15/07/2018 

7 O Diário de Anne Frank 45.00 3  7 7 45.00 15/07/2018 

8 O dia do Curinga 65.00 3  8 8 65.00 15/07/2018 

9 O mundo de Sofia 48.00 3  9 8 65.00 16/07/2018 

10 Através do Espelho 38.00 3  10 9 48.00 16/07/2018 

     11 5 3500.00 16/07/2018 

     12 5 3500.00 16/07/2018 

     13 6 450.00 16/07/2018 

 

Nessa situação, não há nenhum valor retornado na subconsulta, pois nenhum valor cumpre 
a condição de igualdade dos ids. Assim, o EXISTS retornará FALSE e o produto de id=4 
não será retornado na consulta externa. 

4. O processo seguirá para todos os registros de produto, mas nós já podemos perceber que 
os valores que serão retornados são aqueles de produtos cujos id estão também na tabela 
venda_produto. Logo, 1, 2, 3, 5, 6, 7, 8 e 9. Somente 4 e 10 não serão retornados. 

 

 

ATENÇÃO!!! 

A cláusula EXISTS retorna TRUE (verdadeiro) se existir algum registro que cumpre a 
subconsulta. A consulta externa, por sua vez, retorna o registro. Caso contrário, o EXISTS 
retorna FALSE (falso) e a consulta externa não irá exibir o registro. 

Do mesmo modo, a cláusula NOT EXISTS retorna TRUE (verdadeiro) se não existir 
nenhum registro que cumpra a subconsulta. A consulta externa, por sua vez, retorna o 
registro. Caso contrário, o NOT EXISTS retorna FALSE (falso) e a consulta externa não 
irá exibir o registro. 

 

 

 

 

4=1? NÃO 

4=1? NÃO 

4=1? NÃO 

4=2? NÃO 

4=2? NÃO 

4=3? NÃO 

4=7? NÃO 

4=8? NÃO 

4=8? NÃO 

4=9? NÃO 

4=5? NÃO 

4=5? NÃO 

4=6? NÃO 

 

 

 

 



________________________________________ 

 

84 

Esquematizando: 

 
Esquema 14 – Consultas aninhadas. 

 

36- (FGV - 2023 – TJ SE – Analista Judiciário) Considere uma tabela relacional TAB, 
com colunas A e B. A coluna A constitui a chave primária de TAB. A instância de TAB 
contém 100 linhas, e em todas as linhas o valor da coluna B é 10. Nesse contexto, analise o 
comando SQL a seguir. 

select * from TAB t 

where not exists 

          (select * from TAB tt 

              where t.B = tt.B and t.A > tt.A) 

Além da linha de títulos, o número de linhas produzidas pelo comando acima é: 

a) 0; 

b) 1; 

c) 98; 

d) 99; 

e) 100. 

Resolução:  

Primeiro de tudo, vamos montar uma tabela TAB fictícia com base nos dados da questão. 
Como a questão afirma que A é chave primária e a tabela possui 100 linhas, então termos 
100 valores diferentes para A, pois uma chave não pode ter valores repetidos. Para fins de 
resolução, podemos considerar valores de 1 a 100 (poderiam ser quaisquer outros). O valor 
de B para todas as linhas é 10.  

•Uma subconsulta, consulta interna ou seleção interna é uma consulta que está 
aninhada dentro de uma instrução SELECT, INSERT, UPDATE ou DELETE ou 
em outra subconsulta. 

•As subconsultas podem ser comparadas com a consulta externa com o uso de 
operadores IN (ou NOT IN), ANY, ALL ou EXISTS (ou NOT EXISTS), além dos 
operadores básicos =, <, <=, >, >=, <>. 

Consulta aninhada

• ANY: retorna TRUE se qualquer um dos valores da subconsulta atender 
a condição.

• ALL: retorna TRUE se todos os valores da subconsulta atenderem a 
condição.

• EXISTS: retorna TRUE se a subconsulta retornar um ou mais 
registros.

• NOT EXISTS: retorna TRUE se a subsconsulta não retornar nenhum 
registro.

Cláusulas Especiais



________________________________________ 

 

85 

Logo, chegamos a seguinte tabela TAB: 

 

Agora vamos ao comando: 

select * from TAB t 

-- selecionar os valores da tabela TAB referenciada como t.  

where not exists 

-- quando não existir retorno para a subconsulta a seguir 

          (select * from TAB tt 

-- selecionar os valores da tabela TAB referenciada como tt. Nesse caso, teremos, 
em tempo de execução, duas referências para a mesma tabela TAB, ou seja, teremos 
duas cópias da mesma tabela durante a consulta. 

              where t.B=tt.B and t.A > tt.A) 

   -- e haverá uma comparação dos atributos das referências dessas tabelas. 

Vamos à execução: 

1. Isolando o primeiro valor da referência t e comparando-o com todos os resultados da 
subconsulta com base na condição WHERE, ou seja, verificar se o valor de t.b é igual a tt.b 
e se t.A é maior que tt.A.  

    t    tt 

   

Como não existe nenhum registro que cumpra as condições, o NOT EXISTS retornará 
TRUE e, portanto, essa primeira linha será selecionada. 

 

 

t.b = tt.b (10=10?) SIM 

t.A > tt.A (1 > 1?) NÃO 

t.A > tt.A (1 > 2?) NÃO 

... 

t.A não será maior que 
nenhum tt.A 

 

 



________________________________________ 

 

86 

2. Vamos a segunda linha: 

    t    tt 

   

Nesse caso, será retornado um valor, pois existe um valor em t cujo valor de A seja maior 
que o valor de tt e seu B seja igual. Como existe pelo menos um registro que cumpre a 
condição, o NOT EXISTS retorna FALSE e, assim, o valor da segunda linha não será 
retornado na consulta externa. 

3. Perceba que para todas as demais linhas, sempre haverá um retorno, pois o valor de A 
em t será maior do que algum valor de A da referência tt. Logo, NOT EXISTS será FALSE 
para todas elas e, portanto, não será mais retornado nenhum valor.  

Embora tenhamos usado um exemplo de tabela com números de exemplo, essa conclusão 
pode ser obtida pela lógica. Como A é chave primária e nunca terá dois valores iguais, então 
teremos um menor valor que, portanto, não será maior que nenhum outro valor dessa 
tabela. O caso do B é mais simples, pois como sempre é 10, seu valor sempre será igual a 
algum valor dessa tabela (no caso a todos). 

Gabarito: Letra B. 

 

37- (CESPE / CEBRASPE - 2022 - TCE-SC - Auditor Fiscal de Controle Externo). 

 

Considerando as tabela1 e tabela2 apresentadas, julgue o item que se segue, referentes a 
banco de dados. 

Considere que o comando a seguir seja executado sem erro. 

select campo from tabela2 

where exists 

(select campo from tabela1) 

t.b = tt.b (10=10?) SIM 

t.A > tt.A (2 > 1?) SIM 

.., 

Na primeira comparação já 
será retornado um valor. 

 

 



________________________________________ 

 

87 

Nesse caso, o resultado será a tabela seguinte. 

 

Resolução:  

A cláusula EXISTS faz uma verificação se existe algum resultado para a subconsulta 
informada. Caso haja, o resultado da consulta principal é exibido. 

Dado o comando: 

select campo from tabela2 

-- selecionar o valor de campo da tabela2 

where exists 

-- desde que esse valor exista em algum retorno da subsconsulta subsequente 

(select campo from tabela1) 

-- selecionar o valor de campo da tabela1 

O ponto desse comando é que a subconsulta apenas verifica se existe algum valor para 
campo na tabela1, não fazendo qualquer comparação entre os valores das tabelas. Nesse 
caso, a subconsulta sempre retorna TRUE, pois existem valores na tabela1. Logo, o 
SELECT externo será realizado para todos os valores da tabela2. 

Para entender melhor, vamos isolar o primeiro valor da tabela2 que é 5. A consulta será 
executada com a seguinte lógica: “retorne o valor 5, desde que exista algum retorno no 
EXISTS, ou seja, desde que seja retornado algum valor de campo da tabela1”. A subconsulta 
retornará TRUE, então o valor 5 será retornado. O mesmo acontecerá para todos os demais 
elementos de tabela2. Logo, o resultado será uma tabela com os mesmos valores da tabela2. 

 

A situação seria diferente caso houvesse alguma condição de comparação: 

select campo from tabela2 

where exists 

(select campo from tabela1 where tabela1.campo=tabela2.campo)  

 



________________________________________ 

 

88 

Vejamos como seria a execução: 

1. Isolando o primeiro valor da tabela2 e comparando-o com todos os resultados da 
subconsulta (que são simplemente os valores da tabela1). 

   

Como não existe nenhum valor correspondente, então o EXISTS retorna FALSE, e o 
SELECT não será executado para essa primeira linha de valor = 5.  

2. Da mesma forma, já sabemos que não será executado também para a segunda linha. 

3. Agora vejamos o que acontece na terceira linha: 

   

Nesse caso, o valor 7 existe em algum dos valores da subconsulta, então o EXISTS retorna 
TRUE e o SELECT será executado para a linha de valor 7. 

4. O processo seguirá para todos os registros da tabela2, mas nós já podemos perceber que 
os valores que serão retornados são aqueles da tabela2 que também existem na tabela1. 
Portanto somente o 7. 

 

O resultado da assertiva seria obtido com a seguinte comparação: 

select campo from tabela2 

where not exists 

(select campo from tabela1 where tabela1.campo=tabela2.campo)  

 

 



________________________________________ 

 

89 

Vejamos: 

1. Isolando o primeiro valor da tabela2 e comparando-o com todos os resultados da 
subconsulta (que são simplemente os valores da tabela1). 

   

Como não existe nenhum valor correspondente, então o NOT EXISTS retorna TRUE, e o 
SELECT será executado para essa primeira linha de valor = 5.  

2. Da mesma forma, já sabemos que será executado também para a segunda linha. 

3. Agora vejamos o que acontece na terceira linha: 

   

Nesse caso, o valor 7 existe em algum dos valores da subconsulta, então o NOT EXISTS 
retorna FALSE e o SELECT não será executado para a linha de valor 7. 

4. O processo seguirá para todos os registros da tabela2, mas nós já podemos perceber que 
os valores que serão retornados são aqueles da tabela2 que não existem na tabela1. Portanto 
somente o 5, 5, 8, 8 e 9. 

 

Contudo, como vimos, o comando da questão retorna 5, 5, 7, 8, 8 e 9. 

Gabarito: Errado. 

 

 

  



________________________________________ 

 

90 

2.1.10 Cláusulas especiais 

CASE 

A cláusula CASE percorre condições e retorna um valor quando a primeira condição 
é atendida. Assim, uma vez que uma condição seja verdadeira, a expressão para de avaliar 
as demais e retorna o resultado. Se nenhuma condição for verdadeira, ela retorna o valor 
especificado na cláusula ELSE. Caso não haja uma parte ELSE e nenhuma condição seja 
verdadeira, ela retornará NULL. 

A sintaxe da cláusula básica da cláusula CASE é: 

CASE 

    WHEN condição1 THEN resultado1 

    WHEN condição2 THEN resultado2 

    WHEN condiçãoN THEN resultadoN 

    ELSE resultado 

END; 

EXEMPLIFICANDO!!! 

Dada a tabela Produtos a seguir: 

ProdutoID Nome_do_Produto FornecedorID CategoriaID Unidade Preco 

1 Leite 1 1 Litros 3 

2 Banana 1 1 Kilogramas 5 

3 Melancia 1 2 Unidade 6 

4 Pão 2 2 Pacote 4 

 
Ao executar o seguinte comando: 

SELECT ProdutoID, Preco, 

CASE WHEN Preco > 4 THEN 'O preço é MAIOR que 4' 

WHEN Preco = 4 THEN 'O preço é 4' 

ELSE 'O preço é MENOR que 4' 

END AS QuantidadeEmTexto 

FROM Produto; 

O retorno dessa será:  

ProdutoID Preco QuantidadeEmTexto 

1 3 O preço é MENOR que 4 

2 5 O preço é MAIOR que 4 

3 6 O preço é MAIOR que 4 

4 4 O preço é 4 



________________________________________ 

 

91 

38- (CESPE / CEBRASPE - 2023 – SEPLAN-RR - Analista de Planejamento e 
Orçamento) Com pertinência à linguagem SQL, julgue o item abaixo. 

Considere-se o seguinte script SQL. 

select report_code, year, month, day, wind_speed, 

case 

  when wind_speed>= 40 then ‘HIGH’ 

  when wind_speed>= 30 then ‘MODERATE’ 

     else ‘LOW’ 

end as wind_severity 

from station_data 

O resultado da execução do script resultará em erro, pois, caso haja, na tabela station_data, 
algum registro no campo wind_speed com valor superior a 40, não será possível predizer 
se o valor da variável wind_severity será igual a ‘HIGH’. 

Resolução:  

Vamos avaliar o comando: 

select report_code, year, month, day, wind_speed, 

-- seleciona os campos report_code, year, month, day e wind_speed 

case – percorre as condições 

  when wind_speed>= 40 then ‘HIGH’  

  – se o valor de wind_speed for maior ou igual a 40, então retorna ‘HIGH’. 

  when wind_speed>= 30 then ‘MODERATE’ 

  – se o valor de wind_speed for maior ou igual a 30, então retorna ‘MODERATE’. 

else ‘LOW’ 

– se nenhuma das condições anteriores for verdadeira, então retorna ‘LOW’. 

end as wind_severity 

– finaliza a cláusula case e atribui um apelido wind_severity para o resultado. 

from station_data – a partir da tabela station_data. 

Em resumo, temos: 

wind_speed wind_severity 

1 condicão testada: Maior ou igual a 40 HIGH 

2 condicão testada: Maior ou igual a 30 MODERATE 

Se não passou em nenhuma condição anterior LOW 

Portanto a assertiva é falsa, pois se houver na tabela um valor de wind_speed maior que 40, 
a variável wind_severity será HIGH, pois entrará na primeira condição do CASE.  

Gabarito: Errado. 



________________________________________ 

 

92 

TOP, LIMIT ou FETCH FIRST  

As cláusulas TOP, LIMIT ou FETCH FIRST servem para especificar o número de 
registros a serem retornados em uma consulta. A cláusula exata depende do SGBD, mas 
vou deixar aqui pelo menos a sintaxe básica delas para caso apareçam em questões. 

SELECT TOP numero * FROM tabela WHERE condição; (SQL Server/MS Access) 

ou 

SELECT colunas FROM tabela WHERE condição LIMIT numero; (MySQL / PostgreSQL) 

ou 

SELECT colunas FROM tabela WHERE condição FETCH FIRST numero ROWS ONLY; 
(Oracle) 

* numero é a quantidade de linhas que se deseja exibir no resultado. 

 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 Ana Trujillo 
Emparedados y helados 

Ana Trujillo 
Avda. de la 

Constitución 2222 
México 

D.F. 
05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 
Caso deseje selecionar apenas os 2 primeiros clientes, é possível usar:  

SELECT TOP 2 * FROM Clientes; (SQL Server  / MS Access) 

ou 

SELECT * FROM Clientes LIMIT 2; (MySQL / PostgreSQL) 

ou 

SELECT * FROM Clientes FETCH FIRST 2 ROWS ONLY; (Oracle) 

O retorno dessa consulta será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 Ana Trujillo 
Emparedados y helados Ana Trujillo Avda. de la 

Constitución 2222 
México 

D.F. 05021 Mexico 

 

 

 

 

Exibição de apenas os 2 primeiros registros 

 

 



________________________________________ 

 

93 

OFFSET 

A cláusula OFFSET é usada para pular um número específico de registros antes de 
começar a exibir os resultados. A sintaxe básica é: 

SELECT colunas FROM tabela WHERE condição OFFSET numero; 

 

EXEMPLIFICANDO!!! 

Dada a tabela Clientes a seguir: 
IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y helados 
Ana Trujillo 

Avda. de la 
Constitución 2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio Moreno Mataderos 2312 

México 
D.F. 

05023 
Mexico 

4 Blondel père et fils 
Frédérique 

Citeaux 
24, place Kléber Strasbourg 67000 France 

 
Case deseje selecionar os registros, pulando os 2 primeiros, é possível usar:  

SELECT * FROM Clientes OFFSET 2;  

O retorno dessa consulta será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México D.F. 05023 Mexico 

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France 

 

 

SELECT INTO 

A cláusula SELECT INTO é usada para copiar os dados de uma tabela para uma nova 
tabela. A sintaxe básica é: 

SELECT colunas INTO nova_tabela FROM tabela_original WHERE condicao; 

É possível também criar a tabela com a atribuição de valores, usando a sintaxe a seguir: 

SELECT valor1 AS coluna1, valor2 AS coluna2... INTO nova_tabela; 
 

EXEMPLIFICANDO!!! 

O comando SELECT * INTO Clientes_Brasileiros FROM Clientes WHERE Pais = ‘Brasil’; 
copia somente os Clientes do Brasil para uma tabela chamada Clientes_Brasileiras. 

O comando SELECT 1 AS código, ‘João’AS nome INTO alunos; cria a tabela alunos com um 
registro com código=1 e nome= “João”. 

 

Exibição pulando os 2 primeiros registros 

 

 



________________________________________ 

 

94 

O quadro a seguir apresenta um resumo dessas cláusulas especiais: 

OPERADOR RETORNO 

CASE Percorre condições e retorna um valor para a 1ª condição atendida. 

TOP, LIMIT ou 
FETCH FIRST 

Especifica o número de registros a serem retornados. 

OFFSET Pula um número de registros antes de começar a exibir. 

SELECT INTO Copia dados de uma tabela para uma nova tabela 

Esquema 15 - Cláusulas especiais. 

39- (FUNDATEC - 2023 – CAU RS – Analista Superior) Assinale a alternativa que 
corresponde ao resultado esperado pela execução do comando SQL abaixo: 

SELECT * 

INTO BKP_VENDAS 

FROM VENDAS; 

a) Será criada uma nova tabela, nomeada como BKP_VENDAS, com todos os dados da 
tabela VENDAS 

b) Serão atualizados apenas os registros da tabela BKP_VENDAS que tiverem chave 
correspondente na tabela VENDAS 

c) A tabela VENDAS será renomeada para BKP_VENDAS 

d) Será criada uma nova tabela vazia, nomeada como BKP_VENDAS 

e) Serão copiados os dados da tabela BKP_VENDAS para a tabela VENDAS 

Resolução:  

A cláusula SELECT INTO copia os dados de uma tabela em uma nova tabela. A sintaxe 
é:  SELECT colunas INTO nova_tabela FROM tabela_original WHERE condicao; 

Vamos aos itens: 

a) Correto: o comando SELECT * INTO BKP_VENDAS FROM VENDAS; cria uma nova 
tabela BKP_VENDAS e copia todos os registros da tabela VENDAS para ela. 

b) Incorreto: o comando não atualiza registros, ele cria uma tabela e copia os dados 
existentes da tabela VENDAS. 

c) Incorreto: o comando não renomeia a tabela VENDAS, ele apenas cria uma cópia dela. 
Para renomear uma tabela, seria necessário usar ALTER TABLE ou RENAME TABLE. 

d) Incorreto: a tabela BKP_VENDAS será criada, mas não estará vazia. Todos os registros 
da tabela VENDAS serão copiados para ela. 

e) Incorreto: o comando copia os dados de VENDAS para BKP_VENDAS, não o contrário. 

Gabarito: Letra A.  



________________________________________ 

 

95 

2.2 DML: instrução DELETE 

A instrução básica para deletar registros existentes de uma tabela é a instrução 
DELETE.  

A sintaxe básica de uma instrução DELETE é da seguinte forma: 

DELETE FROM nome_da_tabela WHERE condição; 

Esse comando permite excluir os valores das colunas de uma tabela que cumprem uma 
determinada condição.  

Vale ressaltar que a condição após a cláusula WHERE pode utilizar os mesmo operadores 
usados para o SELECT como =, <,  <=, >, >=, <>, BETWEEN, LIKE, IN, AND, OR e 
NOT. 

É possível deletar todos os registros sem indicar nenhuma condição: 

DELETE FROM nome_da_tabela; 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 
Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Vamos supor que você deseje excluir o cliente de nome “Alfred Futtekiste”. Para isso, 
poderá usar o seguinte comando:  

DELETE FROM Clientes WHERE Nome_Cliente='Alfreds Futterkiste';  

Ao realizar uma nova consulta nessa tabela, o resultado será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 

 

Esquema 16 – Sintaxe básica da instrução DELETE. 

DELETE FROM
•nome_tabela

WHERE
•condição (opcional)

Registro excluído 



________________________________________ 

 

96 

40- (CESPE / CEBRASPE - 2022 – PETROBRAS - Profissional Petrobras de 
Nível Superior) Julgue o item abaixo, a respeito da linguagem SQL. 

O comando delete alunos permite apagar uma tabela de nome alunos. 

Resolução:  

O comando DELETE não apaga a tabela, mas sim os dados de uma tabela. Para apagar a 
tabela, deve-se usar o comando DROP. 

Gabarito: Errado. 

 

41- (FCC - 2022 – PGE AM - Técnico em Gestão Procuratorial. Para excluir da 
tabela Advogado_Processo todas as linhas nas quais consta o valor 4378 no campo 
oabAdvogado, utiliza-se a instrução 

a) DELETE * FROM Advogado_Processo AS adp WHERE adp.oabAdvogado=4378; 

b) DELETE FROM Advogado_Processo (SELECT oabAdvogado=4378); 

c) DELETE * FROM Advogado_Processo WHERE oabAdvogado=4378; 

d) DELETE FROM Advogado_Processo WHERE oabAdvogado=4378; 

e) DELETE FROM Advogado_Processo (SELECT * FROM Advogado WHERE 
oabAdvogado=4378); 

Resolução: 

Vamos analisar cada um dos comandos: 

a) Incorreto: DELETE * FROM Advogado_Processo AS adp WHERE 
adp.oabAdvogado=4378; 

A sintaxe do DELETE não é com *. 

b) Incorreto: DELETE FROM Advogado_Processo (SELECT oabAdvogado=4378); 

Há a presença de uma subconsulta incompleta, além de não haver nenhuma cláusula para a 
avaliação como em WHERE oabAdvogado = (subconsulta completa aqui...). 

c) Incorreto: DELETE * FROM Advogado_Processo WHERE oabAdvogado=4378; 

A sintaxe do DELETE não é com *. 

d) Correto: DELETE FROM Advogado_Processo WHERE oabAdvogado=4378; 

Comando em conformidade com a sintaxe do DELETE. 

e) Incorreto: DELETE FROM Advogado_Processo WHERE oabAdvogado = (SELECT 
* FROM Advogado WHERE oabAdvogado=4378); 

Há a presença de uma subconsulta, mas sem nenhuma cláusula de avaliação antes dela como 
WHERE oabAdvogado = (subconsulta completa aqui...). 

Gabarito: Letra D. 

  



________________________________________ 

 

97 

2.3 DML: instrução UPDATE 

A instrução básica para atualizar os registros de uma tabela é a instrução UPDATE.  

A sintaxe básica de uma instrução UPDATE é da seguinte forma: 

UPDATE nome_da_tabela SET coluna1 = valor1, coluna2 = valor2 ... WHERE 
condição; 

Esse comando permite atualizar os valores das colunas de uma tabela que cumprem uma 
determinada condição.  

Vale ressaltar que a condição após a cláusula WHERE pode utilizar os mesmo operadores 
usados para o SELECT como =, <,  <=, >, >=, <>, BETWEEN, LIKE, IN, AND, OR e 
NOT. 

Muito cuidado quando for atualizar uma tabela,  caso não seja indicada nenhuma 
condição, todos os registros da tabela serão atualizados. 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 

Vamos supor que você deseje alterar o Nome_Contato e a cidade do cliente de IDCliente = 
1. Para isso, poderá usar o seguinte comando:  

UPDATE Clientes SET Nome_Contato = 'Alfred Schmidt', Cidade= 'Frankfurt' 

WHERE CustomerID = 1;  

Ao realizar uma nova consulta nessa tabela, o resultado será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Alfred Schmidt Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Caso tivéssemos esquecido de colocar a condição, todos os clientes teriam seu 
Nome_Contato modificado para ‘Alfred Schmidt” e a Cidade modificada para ‘Frankfurt’. 



________________________________________ 

 

98 

A sintaxe básica do comando UDPATE pode ser esquematizada a seguir: 

 

Esquema 17 – Sintaxe básica da instrução UPDATE. 

 

42- (VUNESP - 2024 – Pref Santo André – Analista de Tecnologia da Informação) 
Considere a seguinte tabela de um banco de dados relacional: 

Aluno (Número, Nome, Curso) 

O comando SQL para transferir o aluno de número 247 para o curso de Física é: 

a) SET Aluno.Curso = Física WHERE Número = 247; 

b) SET Aluno Curso = Física FOR Número = 247; 

c) UPDATE Aluno SET Curso = Física WHERE Número = 247; 

d) UPDATE Aluno Curso = Física FOR Número = 247; 

e) UPDATE Aluno.Curso = Física, Aluno.Curso = 247; 

Resolução:  

Vamos analisar cada um dos comandos: 

a) Incorreto: sem o comando UPDATE. 

b) Incorreto: sem o comando UPDATE. 

c) Correto: UPDATE Aluno SET Curso = Física WHERE Número = 247; 

De acordo com a sintaxe do UPDATE. 

d) Incorreto: UPDATE Aluno SET Curso = Física FOR WHERE Número = 247; 

Faltou o SET. Além disso, a condição é definida com WHERE e não com FOR. 

e) Incorreto: UPDATE Aluno SET Aluno.Curso = Física, WHERE Aluno.CursoNumero 
= 247; 

Faltou indicar o nome da tabela, o SET e o WHERE. Além disso, a condição é que o número 
do aluno seja 247 e não o curso. 

Gabarito: Letra C. 

 

 

 

UPDATE

• nome_tabela

SET

• Indicação das colunas 
e seus novos valores.

WHERE

• condição



________________________________________ 

 

99 

43- (FGV - 2015 - Câmara Municipal de Caruaru - PE - Analista Legislativo - 
Informática) Analise o comando SQL mostrado a seguir juntamente com a instância da 
tabela C. 

update C 

set b = (select max(b) from C) 

a b 

1 2 

2 4 

3 7 

4 8 

Assinale a opção que apresenta o número de registros da instância da tabela C que sofreram 
alguma alteração em seus atributos, em relação à instância mostrada, devido à execução 
desse comando. 

a) zero.  b) 1.  c) 2.  d) 3.  e) 4. 

Resolução: 

Vamos analisar o comando: 

update C 

-- atualização da tabela C 

set b = (select max (b) from C). 

-- alterar o valor de b para o máximo b. 

Logo, serão alterados todos os registros, colocando-se 8 no valor de b, pois este é o valor 
máximo, à exceção dos registros que já possuem valor 8. Assim, os novos valores serão: 

a b 

1 8 

2 8 

3 8 

4 8 

Dessa forma, foram alterados 3 registros. 

Gabarito: Letra D.  



________________________________________ 

 

100 

2.4 DML: instrução INSERT INTO 

A instrução para inserir novos registros em uma tabela é a instrução INSERT INTO.  

A sintaxe básica de uma instrução INSERT INTO é da seguinte forma: 

INSERT INTO nome_da_tabela (coluna1, coluna2, coluna3, ...) VALUES (valor1, valor2, 
valor3, ...); 

Esse comando permite inserir os valores indicados após VALUES nas colunas indicadas. 

Caso você esteja inserindo um registro completo, isto é, com todas as colunas, você não 
precisa indicar quais as colunas, mas apenas inserir os dados na mesma ordem das colunas 
da tabela. Assim, a sintaxe a seguir também é válida: 

INSERT INTO nome_da_tabela VALUES (valor1, valor2, valor3, ...); 

 

EXEMPLIFICANDO!!!  

Dada a tabela Clientes a seguir: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

 
Vamos supor que você inserir dois novos clientes. Para isso, poderá usar os seguintes 
comandos:  

INSERT INTO Clientes (IDCliente, Nome_Cliente, Pais) VALUES (4, ‘João Aprovado 
dos Santos’, ‘Brazil’); 

INSERT INTO Clientes VALUES (5, ‘Maria Concursada’, ‘Maria Antonieta’, ‘SGAN 911’, 
‘Brasília’, 6000, ‘Brazil’); 

Ao realizar uma nova consulta nessa tabela, o resultado será: 

IDCliente Nome_Cliente Nome_Contato Endereco Cidade CEP Pais 

1 Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 
Ana Trujillo 

Emparedados y 
helados 

Ana Trujillo 
Avda. de la 

Constitución 
2222 

México 
D.F. 

05021 Mexico 

3 
Antonio Moreno 

Taquería 
Antonio 
Moreno 

Mataderos 2312 
México 

D.F. 
05023 Mexico 

4 João Aprovado NULL NULL NULL NULL Brazil 

5 Maria Concursada Maria 
Antonieta 

SGAN 911 Brasília 6000 Brazil 

 

2 registros inseridos 



________________________________________ 

 

101 

A sintaxe básica do comando INSERT pode ser esquematizada a seguir: 

 

Esquema 18 – Sintaxe básica da instrução INSERT INTO. 

 

44- (CESPE / CEBRASPE - 2024 – CNPq - Analista em Ciência e Tecnologia I)  

 

Tendo como referência a tabela precedente, de nome dados, julgue o item subsequente, com 
relação à SQL. 

As expressões SQL a seguir, após serem executadas, gerarão o mesmo resultado. 

insert into dados values (2,'C',40); 

insert into dados (categoria, modelo, valor) values (2,'C',40); 

Resolução:  

Perfeitamente. As duas sintaxes são equivalentes, sendo que a segunda indica as colunas de 
forma explícita e a primeira utiliza as colunas na ordem definida na tabela. 

A sintaxe básica de uma instrução INSERT INTO é da seguinte forma: 

INSERT INTO nome_da_tabela (coluna1, coluna2, coluna3, ...) VALUES (valor1, valor2, 
valor3, ...); 

Esse comando permite inserir os valores indicados após VALUES nas colunas indicadas. 

Caso você esteja inserindo um registro completo, isto é, com todas as colunas, você não 
precisa indicar quais as colunas, mas apenas inserir os dados na mesma ordem das colunas 
da tabela. Assim, a sintaxe a seguir também é válida: 

INSERT INTO nome_da_tabela VALUES (valor1, valor2, valor3, ...); 

Gabarito: Certo. 

 

  

INSERT INTO

•nome_tabela
•(colunas)

•Opcional.

VALUES

•(valores)



________________________________________ 

 

102 

 

3. LÓGICA DE TRÊS ESTADOS 
 

No SQL, o tratamento de valores nulos introduz uma lógica de três estados, 
diferentemente da lógica booleana tradicional (que possui apenas TRUE e FALSE). Isso 
acontece porque um valor NULL representa um dado desconhecido, e qualquer operação 
envolvendo NULL pode resultar em um terceiro estado chamado "UNKNOWN". 

Os estados da lógica de três valores são: 

§ TRUE (T - Verdadeiro) → Quando uma condição é verdadeira. 

§ FALSE (F - Falso) → Quando uma condição é falsa. 

§ UNKNOWN (? - Desconhecido) → Quando há incerteza (geralmente devido 
a valores NULL). 

Vejamos a tabela verdade para a avaliação dessa lógica: 

NOT A A B A AND B A OR B 

F T T T T 

F T F F T 

F T ? ? T 

T F T F T 

T F F F F 

T F ? F ? 

? ? T ? T 

? ? F F ? 

? ? ? ? ? 
Esquema 19 - Lógica de três estados. 

 

 

45- (FGV - 2023 – SRFB– Auditor Fiscal da Receita Federal) Os principais Sistemas 
Gerenciadores de Bancos de Dados oferecem total suporte à linguagem SQL; um aspecto 
importante da implementação do SQL é o tratamento para valores nulos, quando a lógica 
admite três estados. 

T – true 

F – false 

? – unknown 

 



________________________________________ 

 

103 

Nesse contexto, considere as expressões lógicas a seguir. 

I. (T OR F) AND (? OR T) 

II. T AND ((? OR F) OR ?) 

III. NOT (? AND (? AND ?)) 

Com relação às expressões acima, está correto afirmar que o valor final é unknown (?) em 

a) I, apenas. 

b) I e II, apenas. 

c) I e III, apenas. 

d) II e III, apenas. 

e) I, II e III. 

Resolução:  

Vamos avaliar as expressões: 

I. (T OR F) AND (? OR T)  

 

         (T)     AND       (T) 

 

                       T 

II. T AND ((? OR F) OR ?) 

 

     T AND (     (?)      OR ?)  

 

     T AND            (?)  

 

                   ? 

III. NOT (? AND (? AND ?)) 

 

      NOT (? AND       (?)     ) 

 

      NOT             (?)   

  

                  ? 

Logo, os resultados são desconhecidos em II e III. 

Gabarito: Letra D.  



________________________________________ 

 

104 

 

4. ESQUEMAS DE AULA 
 

 

Linguagem SQL e subdivisões 

 
 

Sintaxe básica da instrução SELECT 

 

 

 

 

 

SQL

DML

Manipulação 
de dados

SELECT

INSERT

UPDATE

DELETE

DQL

Somente o 
SELECT

DDL

Definir 
tabelas e 

elementos 
associados

CREATE

ALTER

DROP

TRUNCATE

VDL

Específica 
para visões

SDL

Específica para 
armazenamento

DCL

Controlar o 
acesso aos 

dados

GRANT

REVOKE

DENY

DTL

Tratar as 
transações

BEGIN 
OU START 

TRANSACTION

COMMIT

ROLLBACK

SAVEPOINT

SELECT

•lista_de_atributos

•* retorna todos os 
atributos.

•DISTINCT
elimina 
duplicidades.

FROM

•nome_tabela

WHERE

•condição

•Opcional, mas 
geralmente usada.



________________________________________ 

 

105 

Condições na cláusula WHERE 

 
Operador LIKE e exemplos 

Operador LIKE Procurar padrão em uma coluna 

% Substitui um número qualquer de 0 ou mais caracteres. 

_ Substitui um único caractere. 

LIKE ‘A%’ Qualquer string que inicie com A. 

LIKE ‘%A’ Qualquer string que termine com A. 

LIKE ‘%A%’ Qualquer string que tenha A em qualquer posição. 

LIKE ‘A_’ 
String de dois caracteres que tenha a primeira letra A e o segundo 
caractere seja qualquer outro. 

LIKE ‘_A’ 
String de dois caracteres cujo primeiro caractere seja qualquer um e a 
última letra seja a letra A. 

LIKE ‘_A_’ 
String de três caracteres cuja segunda letra seja A, independentemente do 
primeiro ou do último caractere. 

LIKE ‘%A_’ 
Qualquer string que tenha a letra A na penúltima posição e a última seja 
qualquer outro caractere. 

LIKE ‘_A%’ 
Qualquer string que tenha a letra A na segunda posição e o primeiro 
caractere seja qualquer outro caractere. 

LIKE ‘_ _ _’ Qualquer string com exatamente três caracteres. 

LIKE ‘_ _ _%’ Qualquer string com pelo menos três caracteres. 

LIKE ‘%”%’ Qualquer string que tenha o caractere “ em qualquer posição. 

C
on
di
çõ
es

= igual

< menor

<= menor ou igual

> maior

>= maior ou igual

<> diferente

BETWEEN registros em um intervalo

LIKE procurar padrão

IN possíveis valores

IS NULL é nulo



________________________________________ 

 

106 

Cláusulas para definir mais de uma condição e negação de condição 

 
Instrução SELECT 

 

AND
•Registros em que todas as condições são verdadeiras.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 AND condição2 AND
condição3 ...;

OR

•Registros em que pelo menos uma das condições é verdadeira.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 OR condição2 OR
condição3 ...;

NOT
•Registros que não satisfazem uma condição.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE NOT condição;

mais de 
uma 

condiçã
o

ou

negação 
de 

condiçã
o

condiçã
o

WHER
EtabelaFROMLista de 

atributos
SELEC

T

SELECT

OU 

SELECT 
DISTINCT

coluna1, 
coluna 2, 

...

ou

*

FROM tabela WHERE

=

<

<=

>

>=

AND

OR

NOT<>

BETWEEN

LIKE

IN

IS NULL

coluna1, 
coluna 2, 

...

ou

*

FROM tabela



________________________________________ 

 

107 

Atribuição de alias 

 
 

Cláusula ORDER BY 

 
 

Funções de agregação 

FUNÇÃO RETORNO 

MIN Menor valor de uma coluna. 

MAX Maior valor de uma coluna. 

COUNT Número de linhas que atendem a um critério. 

AVG Média dos valores de uma coluna numérica. 

SUM Soma dos valores de uma coluna numérica. 

 

Cláusula GROUP BY e HAVING 

 
Produto Cartesiano 

 

•Nome temporário a uma tabela ou coluna
•Tornar os nomes das colunas mais legíveis
•Existe apenas para a duração da consulta
•Cláusula AS (pode ser omitida)

Atribuição de alias

ORDER 
BY

colunas Ordem 
crescente

colunas ASC Ordem 
crescente

colunas DESC Ordem 
decrescente

GROUP BY coluna HAVING condição com 
função agregadora

Produto cartesiano

Seleciona todos os pares 
de linhas das duas 

relações de entrada
(independentemente de ter 
ou não os mesmos valores 

em atributos comuns). 

SELECT tabela1.coluna1, 
tabela2.coluna2., ... FROM
tabela1, tabela2 WHERE

condição;



________________________________________ 

 

108 

 

Tipos de Join 

 

Operadores de conjuntos 

OPERADOR RETORNO 

UNION Todas as linhas pertencentes as consultas envolvidas, sem as repetições. 

UNION ALL Todas as linhas pertencentes as consultas envolvidas, incluindo as repetições. 

INTERSECT Linhas que estão na primeira e na segunda consulta. Intersecção, sem repetições. 

EXCEPT Linhas que estão na primeira, mas não estão na segunda, sem repetições. 

 

Consultas aninhadas e EXISTS (e NOT EXISTS) 

 

INNER JOIN (ou simplemente JOIN)
• Retorna somente os registros que possuem valores relacionados em ambas as tabelas, isto é, as 

intersecções.

LEFT JOIN (ou LEFT OUTER JOIN)
• Retorna todos os registros da tabela da esquerda, e os registros relacionados da tabela da direita.
• Preenche campos não relacionados na tabela da direita com NULL.

RIGHT JOIN (ou RIGHT OUTER JOIN)
• Retorna todos os registros da tabela da direita, e os registros relacionados da tabela da esquerda.
• Preenche campos não relacionados na tabela da esquerda com NULL

FULL OUTER JOIN
• Retorna todos os registros, independente de relação. 
• Preenche campos não relacionados em qualquer das tabelas com NULL.

CROSS JOIN
• Retorna todos os registros da primeira relacionados com todos os registros da segunda.
• É o produto cartesiano.

SELF JOIN
• União de uma tabela com ela mesma.

•Uma subconsulta, consulta interna ou seleção interna é uma consulta que está aninhada 
dentro de uma instrução SELECT, INSERT, UPDATE ou DELETE ou em outra 
subconsulta. 

•As subconsultas podem ser comparadas com a consulta externa com o uso de operadores 
IN (ou NOT IN), ANY, ALL ou EXISTS (ou NOT EXISTS), além dos operadores 
básicos =, <, <=, >, >=, <>. 

Consulta aninhada

•ANY: retorna TRUE se qualquer um dos valores da subconsulta atender a 
condição.

•ALL: retorna TRUE se todos os valores da subconsulta atenderem a condição.
•EXISTS: retorna TRUE se a subconsulta retornar um ou mais registros.
•NOT EXISTS: retorna TRUE se a subsconsulta não retornar nenhum registro.

Cláusulas Especiais



________________________________________ 

 

109 

Cláusulas Especiais 

OPERADOR RETORNO 

CASE Percorre condições e retorna um valor para a 1ª condição atendida. 

TOP, LIMIT ou 
FETCH FIRST 

Especifica o número de registros a serem retornados. 

OFFSET Pula um número de registros antes de começar a exibir. 

SELECT INTO Copia dados de uma tabela para uma nova tabela 

 

Sintaxe básica da instrução DELETE 

 
 

Sintaxe básica da instrução UPDATE 

 
 

Sintaxe básica da instrução INSERT INTO 

 

  

DELETE FROM
•nome_tabela

WHERE
•condição (opcional)

UPDATE

• nome_tabela

SET

• Indicação das 
colunas e seus 
novos valores.

WHERE

• condição

INSERT INTO

•nome_tabela
•(colunas)

•Opcional.

VALUES

•(valores)



________________________________________ 

 

110 

Lógica de três estados 

NOT A A B A AND B A OR B 

F T T T T 

F T F F T 

F T ? ? T 

T F T F T 

T F F F F 

T F ? F ? 

? ? T ? T 

? ? F F ? 

? ? ? ? ? 
  



________________________________________ 

 

111 

 

5. MAPA MENTAL 
 

 

  



________________________________________ 

 

112 

 

6. CHEAT SHEET (FOLHA DE CÓDIGO) 
 

 

 

  



________________________________________ 

 

113 

 

7. REFERÊNCIAS 
 

DEVMEDIA.  SQL: EXISTS. Disponível em: <https://www.devmedia.com.br/sql-
exists/41176>. Acesso em: 08 nov. 2021. 

DEVMEDIA.  SQL: Utilizando o Operador UNION e UNION ALL. Disponível em: 
<https://www.devmedia.com.br/sql-utilizando-o-operador-union-e-union-all/37457>. 
Acesso em: 08 nov. 2021. 

ELMASRI, Ramez; NAVATHE, Shamkant B. Sistema de Banco de Dados. 6ed. São 
Paulo: Pearson Addison Wesley, 2011. 

SOFTBLUE. Curso SQL Completo. Disponível em: 
<http://www.softblue.com.br/site/curso/id/3/CURSO+DE+SQL+COMPLETO+BAS
ICO+AO+AVANCADO+ON+LINE+BD03+GRATIS>. Acesso em: 22 out. 2018. 

W3SCHOOLS. SQL Tutorial. Disponível em: <https://www.w3schools.com/sql/>.  
Acesso em: 19 out. 2018. 

LEARNSQL. SQL Basics Cheat Sheet. Disponível em: <https://learnsql.com/blog/sql-
basics-cheat-sheet/>.  Acesso em: 09 fev. 2025. 

 

 

 

 

https://www.devmedia.com.br/sql-exists/41176
https://www.devmedia.com.br/sql-exists/41176
https://www.devmedia.com.br/sql-utilizando-o-operador-union-e-union-all/37457
http://www.softblue.com.br/site/curso/id/3/CURSO+DE+SQL+COMPLETO+BASICO+AO+AVANCADO+ON+LINE+BD03+GRATIS
http://www.softblue.com.br/site/curso/id/3/CURSO+DE+SQL+COMPLETO+BASICO+AO+AVANCADO+ON+LINE+BD03+GRATIS
https://www.w3schools.com/sql/

