(S}

GRAPHQL E MELHOR QUE REST!

GRAPHQL WINS!

API's REST se mostraram muito inflexivels para acompanhar as rapidas
mudancas de requisitos dos Clients que as acessam.

O GraphQL fol desenvolvido para lidar com a necessidade de mailor
flexibilidade e eficiéncia! Resolve muitas das deficiéncias e ineficiéncias que
os desenvolvedores experimentam ao interagir com as API's REST.

(9

NO UNDERFETCHING

Nao precisa implementar uma série de endpoints para obter os dados que

precisa:
REST GraphQL
/users/<id> type User {
/users/<id>/posts name: String!
/users/<id>/followers emall: String!

posts: [Post |
followers: [User |

(9

NO OVERFETCHING

Adeus a sobrecarga de dados. Perceba que o GraphQL permite requisitar
somente 0s campos que forem necessarios:

REST

/posts/73

{

}

}

post": {
"title": "Learn GraphQL',
"content": "Lorem ipsum...’,
"comments": [...],
"author": { ...}

GRAPHQL

query {
post(id: 73) {
title
author {
name
}
}
}

J

"data": {

}

"post": {
"title": "Learn GraphQL!
"author": {
"name"; "Jon"

}
}

RAPIDA PROTOTIPAGEM

Um padrao comum no REST é criar endpoints de acordo com as "views" da
aplicacao. Porem isso torna despendioso cada mudanca que precisar ser
feita no front end.

Com GraphQL isso e resolvido gracas a sua natureza flexivel. Uma vez que
o Client pode especificar exatamente os dados de que precisa, nenhum
engenheiro precisa fazer ajustes no back end quando a estrutura dos dados
precisa ser mudada no front end.

BENEFICIOS DO SCHEMA & TYPE SYSTEM

O GraphQL usa um sitema de tipagem forte para definir os recursos de uma
API. Todos os tipos sao expostos usando o Schema Definition Language (SDL).

[sto serve como um contrato entre o Client e o Server para definir como 0s
dados podem ser acessados.

Uma vez definido, back end e front end podem trabalhar sem comunicacao,
Ja que ambos estao consclentes da estrutura de dados existente.

