
2017­6­17 Node.js e HTTP: Aula 5 ­ Atividade 5 Trabalhando com Cache | Alura ­ Cursos online de tecnologia

https://cursos.alura.com.br/course/nodejs­avancado/task/19585 1/4

 05

Trabalhando com Cache

Trabalhando com Cache

Um ponto muito importante de se preocupar em uma aplicação de alta escalabilidade é com o gerenciamento dos recursos

consumidos pela máquina, dentre eles memória e acesso a disco são dois dos mais sensíveis.

Sabemos que o Node.js trabalha muito bem e performa muito bem em operações de I/O e é uma boa prática que nosso

código faça mais execuções de I/O do que de armazenamento em memória.

Porém é comum que a aplicação possua dados que não sofram variações com tanta frequência. E se esses dados estão

armazenados em um banco de dados relacional, como é o nosso caso com MySQL, passa a ser um bom sinal de alerta para

veri⌠carmos se o uso de uma camada de cache que amenize os acessos ao banco seria uma melhoria na performance da

aplicação.

Cache de dados com Memcached

Um outro fator que pesa muito positivamente no momento de de⌠nir utilizar uma política de cache ou não é o fato que já

existem no mercado muitos frameworks especialistas nessa função, que abstraem as partes complicadas de infraestrutura,

são con⌠áveis e de fato tendem a melhorar a performance das aplicações em que são utilizados.

O Memcached é um ótimo exemplo desses frameworks citados. Ele é de⌠nido na verdade como um sistema de caching de

objetos em memória grátis, open source, distribuído e de alta performance, genérico por natureza, mas com uma forte

intenção de acelerar o processamento de aplicações web dinâmicas, aliviando a carga de acessos ao banco de dados.

Exatamente o objetivo que tínhamos ao pensar em implementar uma política de cache no PayFast.

Ele funciona baseado em um esquema chave-valor que armazena pequenos pedaços de dados de qualquer tipo desejado

(string, objetos...) em memória. Podendo esses dados ser oriundos de consultas à banco de dados, à outras APIs ou até

mesmo do carregamento de páginas.

Ele é um framework simples, porém bastante poderoso. Fácil de instalar, fazer deploy e de desenvolver sobre ele, por ter um

design simples. Além de prover APIs para diversas linguagens de programação.

A instalação do Memcached é muito simples. Uma forma bem padrão de fazê-la é baixar a última versão direto do site o⌠cial,

descompactar e instalar:

 wget http://memcached.org/latest
 tar ‐zxvf memcached‐1.x.x.tar.gz
 cd memcached‐1.x.x
 ./configure && make && make test && sudo make install

Este exemplo mostra a instalação feita diretamente no terminal.

Após instalado, basta executar um comando no próprio terminal para que ele suba e ⌠que pronto para receber conexões:

 memcached ‐vv

2017­6­17 Node.js e HTTP: Aula 5 ­ Atividade 5 Trabalhando com Cache | Alura ­ Cursos online de tecnologia

https://cursos.alura.com.br/course/nodejs­avancado/task/19585 2/4

O parâmetro ‐vv indica que queremos que ele rode num modo 'verboso' nível 2.

Após essa execução, ele já exibe no terminal um informativo do seu status atual, que ⌠ca sendo atualizado em tempo real

conforme o cache for utilizado

 <18 server listening (auto‐negotiate)
 <19 send buffer was 9216, now 5592405
 <19 server listening (udp)
 <20 server listening (udp)
 <21 server listening (udp)
 <23 send buffer was 9216, now 5592405

Implementando um cliente para cache

Além de o próprio Memcached já disponibilizar diversas APIs para facilitar a integração de diferentes linguagens de

programação com o framework, as linguagens também fazem seu esforço para se manter facilmente acessíveis a recursos

importantes como esse.

Com a comunidade Node, isso não é diferente. Existem inúmeros pacotes para integração do Node com o Memcached. Um

dos mais importantes, e que será utilizado pelo PayFast, é um que leva o mesmo nome do framework de caching.

Para fazer sua instalação, basta usar o npm mais uma vez:

 npm install ‐‐save memcached

O uso dessa lib também é bem simples. A primeira coisa a fazer é carregar o módulo no arquivo em que se deseja ter o

cliente e, em seguida, instanciar um novo objeto da lib, que no seu retorno, entrega o cliente que foi criado:

 var memcached = require('memcached');

 var client = new memcached('localhost:11211',
 {
 retries:10,
 retry:10000,
 remove:true
 });

Repare que a construção do memcached recebe dois parâmetros: a url onde o Memcached está rodando e um json com

detalhes sobre as con⌠gurações desejadas para criação desse cliente. A url utiliza uma porta que sequer de⌠nimos ao subir o

Memcached, mas tudo bem pois esta é a porta default do serviço.

Os parâmetros passados no json são con⌠gurações especí⌠cas para este cliente e não sobrescrevem nenhuma con⌠guração

que tenha sido de⌠nida no servidor.

retries : 10, o número de retentativas feitas por request.

retry : 10000, o tempo entre a falha de um servidor e uma tentativa de colocá-lo de volta em serviço.

remove : true, autoriza a remoção automática de servidores mortos do pool.

2017­6­17 Node.js e HTTP: Aula 5 ­ Atividade 5 Trabalhando com Cache | Alura ­ Cursos online de tecnologia

https://cursos.alura.com.br/course/nodejs­avancado/task/19585 3/4

Existem diversas outras propriedades que podem ser utilizadas. É possível consultar a lista completa de propriedades no

próprio GitHub do projeto: https://github.com/3rd-Eden/memcached/blob/master/README.md (https://github.com/3rd-

Eden/memcached/blob/master/README.md)

Com o cliente em mãos ⌠ca fácil consultar se uma chave está no cache:

 client.get('pagamento‐' + id, function (err, data) {

 if (err || !data){
 console.log('MISS ‐ chave não encontrada no cache');
 } else {
 console.log('HIT ‐ valor:' + data);
 }
 });

A sintaxe e forma de uso são bem simples. O cliente funciona basicamente como um mapa, a partir do qual é possível fazer

um get passando a chave que se quer consultar. Como é comum no mundo Node, o segundo parâmetro é uma função de

callback, que recebe um possível erro e um objeto de dados.

Caso aconteça um HIT no cache, ou seja, a chave de fato está presente, a variável de dados, que de⌠nimos como data é

quem armazena esse valor e ele pode ser utilizado para o que a regra de negócio pedir.

Caso aconteça um MISS, que é quando a chave não é encontrada, o objeto data é retornado vazio. A outra opção que pode

acontecer é que haja algum erro na execução. Nesse caso, essa informação virá na variável err.

Para inserir uma nova chave no cache também é bem simples:

 client.set('pagamento‐3', dados, 100000, function (err) {
 console.log('nova chave: pagamento‐3');
 });

O método invocado agora é o set e são passados como parâmetros a chave, o valor, o tempo que ela deve permanecer no

cache a uma função de callback.

https://github.com/3rd-Eden/memcached/blob/master/README.md

2017­6­17 Node.js e HTTP: Aula 5 ­ Atividade 5 Trabalhando com Cache | Alura ­ Cursos online de tecnologia

https://cursos.alura.com.br/course/nodejs­avancado/task/19585 4/4

