2017-6-17 Node.js e HTTP: Aula 5 - Atividade 5 Trabalhando com Cache | Alura - Cursos online de tecnologia

O os
Trabalhando com Cache

Trabalhando com Cache

Um ponto muito importante de se preocupar em uma aplicaco de alta escalabilidade é com o gerenciamento dos recursos

consumidos pela maquina, dentre eles memoria e acesso a disco sdo dois dos mais sensiveis.

Sabemos que o Node.js trabalha muito bem e performa muito bem em operacées de I/O e é uma boa pratica que nosso

c6digo faca mais execucoes de I/0 do que de armazenamento em memdria.

Porém é comum que a aplicacdo possua dados que néo sofram variagdes com tanta frequéncia. E se esses dados estdo
armazenados em um banco de dados relacional, como é o nosso caso com MySQL, passa a ser um bom sinal de alerta para
verificarmos se o uso de uma camada de cache que amenize os acessos ao banco seria uma melhoria na performance da

aplicacdo.

Cache de dados com Memcached

Um outro fator que pesa muito positivamente no momento de definir utilizar uma politica de cache ou n#o é o fato que ja
existem no mercado muitos frameworks especialistas nessa funcao, que abstraem as partes complicadas de infraestrutura,

sdo confiaveis e de fato tendem a melhorar a performance das aplicagdes em que s#o utilizados.

0 Memcached é um 6timo exemplo desses frameworks citados. Ele é definido na verdade como um sistema de caching de
objetos em meméria grétis, open source, distribuido e de alta performance, genérico por natureza, mas com uma forte
intencdo de acelerar o processamento de aplicaces web dinamicas, aliviando a carga de acessos ao banco de dados.

Exatamente o objetivo que tinhamos ao pensar em implementar uma politica de cache no PayFast.

Ele funciona baseado em um esquema chave-valor que armazena pequenos pedacos de dados de qualquer tipo desejado
(string, objetos...) em memoria. Podendo esses dados ser oriundos de consultas a banco de dados, a outras APIs ou até

mesmo do carregamento de paginas.

Ele é um framework simples, porém bastante poderoso. Facil de instalar, fazer deploy e de desenvolver sobre ele, por ter um

design simples. Além de prover APIs para diversas linguagens de programagao.

A instalacdo do Memcached é muito simples. Uma forma bem padrio de fazé-la é baixar a tiltima verszo direto do site oficial,

descompactar e instalar:

wget http://memcached.org/latest

tar -zxvf memcached-1.x.x.tar.gz

cd memcached-1.x.x

./configure && make && make test && sudo make install

Este exemplo mostra a instalagéo feita diretamente no terminal.

Apds instalado, basta executar um comando no proprio terminal para que ele suba e fique pronto para receber conexdes:

memcached -vv

https://cursos.alura.com .br/course/nodejs-avancado/task/19585 1/4

2017-6-17 Node.js e HTTP: Aula 5 - Atividade 5 Trabalhando com Cache | Alura - Cursos online de tecnologia

O pardmetro -vv indica que queremos que ele rode num modo 'verboso' nivel 2.

Apds essa execugdo, ele ja exibe no terminal um informativo do seu status atual, que fica sendo atualizado em tempo real

conforme o cache for utilizado

<18 server listening (auto-negotiate)
<19 send buffer was 9216, now 5592405
<19 server listening (udp)
<20 server listening (udp)
<21 server listening (udp)
<23 send buffer was 9216, now 5592405

Implementando um cliente para cache

Além de o proprio Memcached ja disponibilizar diversas APIs para facilitar a integracdo de diferentes linguagens de
programacdo com o framework, as linguagens também fazem seu esforco para se manter facilmente acessiveis a recursos

importantes como esse.

Com a comunidade Node, isso ndo é diferente. Existem iniimeros pacotes para integracdo do Node com o Memcached. Um

dos mais importantes, e que sera utilizado pelo PayFast, é um que leva o mesmo nome do framework de caching.

Para fazer sua instalagdo, basta usar o npm mais uma vez:

npm install --save memcached

O uso dessa lib também é bem simples. A primeira coisa a fazer é carregar o médulo no arquivo em que se deseja ter o

cliente e, em seguida, instanciar um novo objeto da lib, que no seu retorno, entrega o cliente que foi criado:

var memcached = require('memcached");

var client = new memcached('localhost:11211",

{

retries:10,
retry:10000,
remove:true

s

Repare que a construgdo do memcached recebe dois parametros: a url onde o Memcached estd rodando e um json com
detalhes sobre as configuracGes desejadas para criacdo desse cliente. A url utiliza uma porta que sequer definimos ao subir o

Memcached, mas tudo bem pois esta é a porta default do servigo.

Os parametros passados no json sdo configuragdes especificas para este cliente e nfo sobrescrevem nenhuma configuragéo

que tenha sido definida no servidor.

e retries : 10, o numero de retentativas feitas por request.
e retry : 10000, o tempo entre a falha de um servidor e uma tentativa de coloca-lo de volta em servico.

e remove : true, autoriza a remocdo automatica de servidores mortos do pool.

https://cursos.alura.com .br/course/nodejs-avancado/task/19585 2/4

2017-6-17 Node.js e HTTP: Aula 5 - Atividade 5 Trabalhando com Cache | Alura - Cursos online de tecnologia

Existem diversas outras propriedades que podem ser utilizadas. E possivel consultar a lista completa de propriedades no

proéprio GitHub do projeto: https://github.com/3rd-Eden/memcached/blob/master/README.md (https://github.com/3rd-
Eden/memcached/blob/master/README.md)

Com o cliente em maos fica facil consultar se uma chave estd no cache:

client.get('pagamento-' + id, function (err, data) {

if (err || !data){
console.log('MISS - chave ndo encontrada no cache');
} else {
console.log('HIT - valor:' + data);
}
3

A sintaxe e forma de uso sdo bem simples. O cliente funciona basicamente como um mapa, a partir do qual é possivel fazer
um get passando a chave que se quer consultar. Como é comum no mundo Node, o segundo parametro é uma fungao de

callback, que recebe um possivel erro e um objeto de dados.

Caso aconteca um HIT no cache, ou seja, a chave de fato esta presente, a varidvel de dados, que definimos como data é

quem armazena esse valor e ele pode ser utilizado para o que a regra de negdcio pedir.

Caso aconteca um MISS, que é quando a chave néo é encontrada, o objeto data é retornado vazio. A outra opcéo que pode

acontecer é que haja algum erro na execugdo. Nesse caso, essa informacéo vird na variavel err.

Para inserir uma nova chave no cache também é bem simples:

client.set('pagamento-3', dados, 100000, function (err) {
console.log('nova chave: pagamento-3");

1)

0 método invocado agora é o set e sdo passados como parametros a chave, o valor, o tempo que ela deve permanecer no

cache a uma func@o de callback.

https://cursos.alura.com .br/course/nodejs-avancado/task/19585

3/4

https://github.com/3rd-Eden/memcached/blob/master/README.md

2017-6-17 Node.js e HTTP: Aula 5 - Atividade 5 Trabalhando com Cache | Alura - Cursos online de tecnologia

https://cursos.alura.com .br/course/nodejs-avancado/task/19585 4/4

