Introducdo a logica de programacao

Asimov Academy

ASIMOV

Introdugdo a logica de programacao

Conteudo
01. Bem vindos 4
AlmportanciadalLogicadeProgramagdoo i e e e 4
ConsideragBes Finais i i e e e e e e e e 4
02. O que podemos e nao podemos fazer com Python 5
ApopularidadedoPython 5
O que éPossivel FazercomPython? 5
Pontos Positivos e NegativosdoPython L oo o oL 6
Pontos Positivos 6
Pontos Negativos e 6
Conclusd0 . . . o o o e e 6
03. Como tirar suas dividas 7
ComentdriosnaPlataforma 7
ComunidadenoDiscord e e e e e e e e 7
Stack Overflow: Respostas Rapidas e de AlcanceGlobal 7
[Acomo Ferramentade Apoio e e e 7
AlmportanciadaAutonomia 8
04. Apresentacdo a légica de programagio 9
Introducdo as Linguagensde Programacdo v v v it e e e 9
Almportancia de Compreenderaldgica i 9
Beneficios de Estudar a Légicade Programacdoo it i i 9
ConcluS30 . . . o o i e 10
05. O Conceito de Algoritmo 11
A lmportancia dos Algoritmos na Comunica¢dao com o Computador 11
Exemplo Pratico: Algoritmode Compras e 11
Reflexdo Sobre o Cotidianoe osAlgoritmos 12
ConCluSA0 . .« v v o e e e e 12
06. Exemplos praticos de algoritmos 13
Revisdo do Exemplode Compras o v v v v v i i e e e 13
Exemplo Pratico: Algoritmode PurédeBatatas 13
CeNANIO: v v e e 13
Passosdo Algoritmo: L e e 13
Asimov Academy 1

Introdugdo a logica de programacao

Exemplo Pratico: Algoritmo de Afericdlodo Tempero 14
CeNANIO: . . o v e e e e e 14
Estruturado Algoritmo: e 14

Conclusdo o o e e e 15

07. Estrutura dos algoritmos 16

Estrutura Geral dos Algoritmos L 16

Exemplos Praticos i e e e 16
Exemplo 1: Algoritmodo PurédeBatatas 16
Exemplo 2: Algoritmo de um SistemadeGPS 17

EXercicio Proposto i e e 17

08. Elementos basicos da programacio 18

Resolugdo do Exercicio: CalculodaMédiadasNotas 18

Consideracgdes sobre a Estrutura dos Algoritmos 18
ImportdnciadaOrdemdosPassos. 18

Elementos Basicosda Programacgdo v i it e 19

Conclusdo o o e e e e 19

09. Variaveis 21

OQueS3oVariaveis? . . . v v v v 21
Exemplosdo Cotidiano 21

TiposdeDadosdasVariaveis. i e 22

Varidveis e CONStantes o i e e e 22

ConsideragBes Finais i i e e e e e e e e 22

10. Operadores 24

Tiposde Operadores i i i e e e e e e e e e e 24
1. Operadores Aritméticos e 24
2.0peradoresRelacionais e e 24
3.0peradoresLOICOS . . v v v v i e e 25

ACombinacdodos Operadores o o v i i it e e e e e e e 26

CoNclUSA0 . . . o o o e e e 26

11. Estruturas de controle de fluxo 27

O Condicional “Se” e e e e e e 27
DecisOes SimpleseCompletas 27
OPapeldosBooleanos v o i i e e e e e 28

ConClUSA0 . .« o v o e e e e 28

Asimov Academy 2

Introdugdo a logica de programacao

12, Estruturas de Repeticao 29
Estrutura “Enquanto” (While) 29
ExemplodeAlgoritmo 29
PerigodoLoopInfinito 29
Exemplode Erro: o L e e e e 29
Relagdocom OutrasLinguagens i it i it e e 30
ConcluS30 . . . o o i 30

Asimov Academy 3

Introdugdo a logica de programacao

01. Bem vindos

Seja muito bem-vindo(a) ao curso completo de Logica de Programacao, desenvolvido pela Asimov
Academy. E uma satisfacdo ter vocé aqui, iniciando sua jornada no mundo da programacao!

A Importincia da Logica de Programacao

A Légica de Programacdo é o ponto de partida para a maioria dos cursos de programacdo. Uma vez
que os conceitos fundamentais sdo aprendidos, torna-se mais facil compreender e dominar outras lin-
guagens, ja que todas elas compartilham dos mesmos principios basicos. ## Estrutura do Contelido

Durante o curso, vocé encontrara:

« Conceitos basicos: Fundamentos e principios da l6gica de programac3o.

« Exemplos praticos: Exercicios e exemplos de c6digo para reforcar o aprendizado.

« Referéncias a Python: Alguns médulos e exemplos podem mencionar Python, pois esse con-
teddo foi inicialmente extraido do curso completo de Python da Asimov Academy. Dito isso, os
conceitos de légica de programacao sdo aplicaveis a qualquer linguagem.

Consideracgoes Finais

Esperamos que este curso oferega uma base sélida para que vocé possa avangar em sua jornada na
programacdo. A Asimov Academy esta comprometida com a exceléncia no ensino e em proporcionar
um aprendizado acessivel e de qualidade a todos os seus alunos. Em caso de dlvidas ou sugestées,
sinta-se a vontade para entrar em contato por meio dos canais disponiveis na plataforma.

Asimov Academy 4

Introdugdo a logica de programacao

02. O que podemos e nao podemos fazer com Python

A popularidade do Python

Uma das dividas mais recorrentes sobre o Python é o motivo de sua popularidade. A principal razao é
sua extrema facilidade de uso:

+ Sintaxe Simples:
Ao comparar Python com linguagens como Java, JavaScript, C ou C++, percebe-se que, para
realizar a mesma tarefa, o Python exige muito menos linhas de c6digo. Sua sintaxe clara e direta
torna o processo de aprendizagem e desenvolvimento mais acessivel.

+ Baixa Barreira de Entrada:
O Python se destaca por permitir que pessoas interessadas em programagao possam comegar a
desenvolver suas tarefas e projetos sem enfrentar a complexidade inerente a outras linguagens.
Essa simplicidade atrai tanto iniciantes quanto profissionais que desejam agilizar processos no
dia a dia.

O que é Possivel Fazer com Python?

O Python é uma linguagem extremamente versatil, permitindo uma ampla gama de aplicagGes:

« Ciéncia de Dados e Analise:
As principais bibliotecas voltadas para analise e ciéncia de dados sdo escritas em Python, o que
atorna a escolha ideal para quem trabalha com inteligéncia artificial, machine learning e analise
de grandes volumes de dados.

« Desenvolvimento Web e Web Scraping:
E possivel desenvolver aplicacdes web robustas, criar scripts para coleta de dados na internet
(web scraping) e automatizar processos online.

« Desenvolvimento de Software e Aplicativos:
Embora o Python ndo seja a op¢ao mais indicada para softwares que exigem um controle de
baixo nivel, ele permite o desenvolvimento de diversos tipos de aplicativos para desktop e web,
além de ser utilizado em jogos e prototipagem rapida.

+ Automatizacao e Solucao de Problemas:
Com sua capacidade de simplificar tarefas repetitivas e automatizar processos, o Python se
torna uma ferramenta poderosa para resolver problemas que nao necessariamente precisam
ser comercializados, mas que trazem ganhos significativos de produtividade.

Asimov Academy 5

Introdugdo a logica de programacao

Pontos Positivos e Negativos do Python
Pontos Positivos

« Facilidade e Simplicidade:
A sintaxe simples do Python possibilita um desenvolvimento rapido e acessivel, favorecendo
tanto o aprendizado quanto a aplicacdo pratica.

+ Versatilidade:
A linguagem é empregada em diversas areas, desde analise de dados e inteligéncia artificial até
desenvolvimento web e automacao de tarefas.

+ Comunidade e Bibliotecas:
O Python conta com uma comunidade ativa e vasta, além de inimeras bibliotecas que ampliam
suas funcionalidades e permitem a realizagao de tarefas complexas com eficiéncia.

Pontos Negativos

« Menor Controle de Baixo Nivel:
Por ser uma linguagem de alto nivel e projetada para simplicidade, o Python ndo oferece a
mesma granularidade de controle que linguagens mais complexas podem proporcionar.
Isso pode ser um desafio quando ha necessidade de manipulagdo detalhada de recursos do
sistema ou otimizagGes especificas.

Conclusao

O Python se destaca por sua facilidade de uso e versatilidade, sendo especialmente poderoso na area
de ciéncia de dados e automacgao. Apesar de suas limitages em termos de controle de baixo nivel
e performance em cenarios muito especificos, sua capacidade de simplificar o desenvolvimento e o
amplo suporte da comunidade o tornam uma excelente escolha para uma variedade de aplicacoes.
Em resumo, com Python é possivel fazer quase tudo, desde aplica¢Ges web e desenvolvimento de
software até solugGes avancadas de andlise e inteligéncia artificial.

Asimov Academy 6

Introdugdo a logica de programacao

03. Como tirar suas duvidas

Ao longo do aprendizado em programacdo, é normal surgirem dividas. A forma como vocé busca
resolvé-las pode impactar diretamente sua evolucado. Aqui, vamos explorar os melhores caminhos
para encontrar respostas e fortalecer sua autonomia como desenvolvedor.

Comentarios na Plataforma

A plataforma da ASIMOV academy permite que vocé tire dividas diretamente nos comentarios. Todas
as perguntas serdo respondidas e, além disso, recomendamos que vocé leia os comentarios de outros
usuarios. Muitas vezes, a divida que vocé tem ja foi respondida para outra pessoa.

Comunidade no Discord

Temos uma comunidade ativa no Discord, onde pessoas trocam experiéncias, ajudam umas as outras
e compartilham conhecimento. Participar desse espago pode acelerar seu aprendizado e te conectar
com outros desenvolvedores em diferentes niveis de experiéncia.

Stack Overflow: Respostas Rapidas e de Alcance Global

O Stack Overflow é uma das maiores redes de perguntas e respostas sobre programacdo do mundo. L3,
programadores de diversas areas e niveis de experiéncia colaboram para resolver dividas de forma agil
e objetiva. Como é uma plataforma global, a chance de encontrar alguém que ja passou pelo mesmo
problema que vocé é muito alta. Muitas vezes, ao pesquisar um erro ou um problema especifico, vocé
encontrard uma resposta pronta e detalhada, e em muitos casos, sera mais rapido do que esperar uma
resposta na nossa plataforma ou na comunidade do Discord.

Além disso, se vocé ndo encontrar a solucdo para sua divida, pode postar sua prépria pergunta e
receber respostas da comunidade, que é extremamente ativa e especializada. Aprender a usar o Stack
Overflow de forma eficiente é uma habilidade valiosa para qualquer desenvolvedor.

IA como Ferramenta de Apoio

Ferramentas de inteligéncia artificial, como ChatGPT, DeepSeek e Gemini, podem ser (teis para es-
clarecer conceitos técnicos e tirar davidas pontuais. No entanto, é importante que vocé ndo dependa
dessas ferramentas como sua principal fonte para escrever codigo. O desenvolvimento da logica de
programacdo vem da pratica, do erro e do aprendizado com os préprios testes.

Asimov Academy 7

Introdugdo a logica de programacao

A Importancia da Autonomia

Parte fundamental do trabalho de um desenvolvedor é encontrar solugdes para problemas testando e
tentando diferentes abordagens. Esse processo de experimentagdo é essencial para o aprendizado e
ajuda a construir autonomia. Quanto mais vocé se desafia a buscar solugoes e testar suas ideias, mais
preparado estara para resolver problemas no futuro.

Lembre-se: aprender a programar ndo é decorar comandos, mas desenvolver a habilidade de pensar e
solucionar desafios de forma légica. Com tempo, pratica e as ferramentas certas, vocé vai se tornar
cada vez mais independente e confiante no seu caminho como desenvolvedor.

Asimov Academy 8

Introdugdo a logica de programacao

04. Apresentacdo a logica de programacao

Seja muito bem-vindo(a) ao médulo do curso, dedicado a Légica de Programacgéao. Este mddulo é
essencial para quem estad comegando a explorar o universo da programacdo, pois nele serdo estudadas
as estruturas e regras da “lingua” utilizada para se comunicar com os computadores.

Introdugdo as Linguagens de Programacao

Assim como usamos o portugués no Brasil ou 0 inglés e o japonés em outros paises, as linguagens de
programacao possuem sua propria estrutura e regras. Cada idioma — seja ele humano ou computa-
cional — tem suas peculiaridades na forma de organizar e comunicar informacdes. Por exemplo, quem
aprendeu uma lingua como o portugués pode encontrar desafios ao tentar aprender um idioma com
estrutura completamente diferente, como o japonés.

No contexto da programacao, podemos definir:

« Logica de Programagio:
Trata-se do estudo da estrutura da linguagem que os computadores interpretam. Ao compreen-
der essa logica, fica claro que, independentemente da linguagem utilizada (Python, Java, C, C++
etc.), os fundamentos permanecem os mesmos. A Unica diferenca esta na forma como cada
linguagem representa os mesmos elementos dentro de sua prépria estrutura.

A Importincia de Compreender a Logica

Este modulo foi planejado para oferecer uma base sélida, permitindo que vocé:

+ Conheca os Elementos Fundamentais:
Entenda os componentes que formam a linguagem dos computadores e como organiza-los
corretamente.

« Facilite a Aprendizagem de Outras Linguagens:
Ao dominar a légica de programacao, a transicdo para o aprendizado de outras linguagens
torna-se mais simples, pois todas compartilham a mesma esséncia estrutural.

Beneficios de Estudar a Légica de Programacao

Ao focar na légica, os alunos desenvolvem uma compreensdo mais clara de como estruturar o pensa-
mento e organizar os codigos de forma eficiente. Essa abordagem facilita a resolu¢do de problemas e
aprimora a capacidade de desenvolver programas de maneira mais eficaz.

Asimov Academy 9

Introdugdo a logica de programacao

Conclusao

Esta aula introdutdria tem como objetivo apresentar os conceitos basicos que formam a estrutura
da linguagem dos computadores. Dominar a logica de programacdo é o primeiro passo para se
comunicar de forma clara e objetiva com as maquinas, permitindo que a aprendizagem de qualquer
outra linguagem se torne mais acessivel.

Inicie essa jornada de conhecimento e descubra como estruturar e organizar seu raciocinio para
transformar ideias em solu¢des computacionais!

Asimov Academy 10

Introdugdo a logica de programacao

05. O Conceito de Algoritmo

Logica de Programacédo pode ser definida como o estudo da estrutura da “lingua” das maquinas.
Essa estrutura é composta por um conjunto de instru¢des que devem ser passadas de forma clara e
completa, uma vez que os computadores sao extremamente literais e ndo possuem a capacidade de
interpretar subjetividades.

Um algoritmo é definido como um conjunto de passos finitos e organizados que, quando executados,
resolvem um determinado problema. Em outras palavras, é uma estrutura que descreve, de forma
sequencial, como realizar uma tarefa ou alcancar um objetivo.

A Importancia dos Algoritmos na Comunica¢ao com o Computador

Para que um computador execute uma tarefa, todas as instru¢des devem ser fornecidas de maneira pre-
cisa. Assim como uma crianga que ainda esta aprendendo a se comunicar precisa receber orientacées
claras, um computador precisa que cada passo seja explicitado sem margem para interpretacoes
subjetivas.

Por exemplo, se a instrucdo for “atravessar a rua”, um adulto pode entender que deve parar, olhar para
os lados e, entdo, cruzar. Contudo, um computador recebera apenas a ordem literal e a executara sem
considerar condigGes externas, como a presenca de veiculos. Por isso, é fundamental que o algoritmo
contenha todas as informagGes necessarias e trate as exce¢bes de forma adequada.

Exemplo Pratico: Algoritmo de Compras

Para ilustrar o conceito, considere o exemplo de um algoritmo de compras. Imagine a seguinte situ-
acao:

1. Objetivo: Realizar a compra de ovos com base na verificacdo da disponibilidade na geladeira.

2. Passos do Algoritmo:

+ Abrir a geladeira: Iniciar o processo de verificacao.

« Verificar a quantidade de ovos: Se a quantidade estiver adequada, o algoritmo encerra a
execucao, pois nenhuma compra é necessaria.

« Caso contrario: Caso a quantidade de ovos seja insuficiente:

Pegar a carteira;

Ir até o supermercado;

Comprar ovos;

Retornar para casa.

Asimov Academy 11

Introdugdo a logica de programacao

3. Condicoes e Excecdes:

« Se houver algum obstaculo que impeca a agdo (por exemplo, a geladeira ndo abre ou
o supermercado esta inacessivel), o algoritmo deve prever esses casos e definir passos
alternativos ou instru¢des para tratar a excecao.

Neste exemplo, o algoritmo é estruturado de forma sequencial e detalhada, garantindo que todas as
etapas e possiveis desvios sejam considerados. A ideia é demonstrar que, mesmo no dia a dia, nossas
acOes podem ser transformadas em uma série de instrugGes logicas e precisas.

Reflexao Sobre o Cotidiano e os Algoritmos

A abordagem dos algoritmos parte do principio de que muitos dos processos cotidianos ja seguem uma
l6gica semelhante aquela utilizada na programacgao. Ao transformar situagdes comuns em sequéncias
de passos bem definidos, é possivel:

« Compreender melhor como os computadores processam informacdes.

« Desenvolver a habilidade de estruturar solu¢des de forma légica e organizada.

« Preparar a base para a escrita de codigos que atendam as expectativas e resolvam problemas de
maneira eficiente.

Conclusao

Esta aula apresentou uma introducdo aos algoritmos, ressaltando sua importancia como a forma de
comunicar instru¢oes aos computadores de maneira clara e completa. Ao entender que um algoritmo
é uma sequéncia de passos que devem ser executados com precisao, torna-se evidente como esse
conceito esta presente em diversas situa¢es do dia a dia. Essa compreensao é fundamental para o
desenvolvimento da logica de programacdo, permitindo que, no futuro, a aprendizagem de outras
linguagens se torne mais acessivel e natural.

Asimov Academy 12

Introdugdo a logica de programacao

06. Exemplos praticos de algoritmos

Nesta continuagdo sobre algoritmos, aprofundaremos o entendimento sobre a importancia da ordem
dos passos e o uso de variaveis e estruturas de repeticdo. Utilizaremos exemplos do dia a dia para
ilustrar como pequenos detalhes podem fazer a diferenca na execugdo correta de um algoritmo.

Revisao do Exemplo de Compras

No exemplo anterior, foi apresentado um algoritmo para efetuar a compra de ovos baseado na verifi-
cacdo da quantidade na geladeira. Imagine que a instrucdo de “pegar a carteira” seja posicionada ap6s
aida ao supermercado. Nesse caso, o algoritmo falharia, pois 0 computador (ou a logica do processo)
ndo teria a carteira disponivel para realizar a compra.

Licao:

Aordem dos passos em um algoritmo é crucial para que ele cumpra o objetivo proposto. Cadainstrucado
deve ser executada na sequéncia correta para que todas as condi¢bes necessarias sejam satisfeitas.

Exemplo Pratico: Algoritmo de Puré de Batatas

Para demonstrar o uso de variaveis e condi¢des, considere um algoritmo para preparar puré de batatas
com a quantidade exata necessaria:

Cenario:

+ Objetivo: Preparar puré de batatas para uma receita que exige 10 batatas.
« Situacdo: Verificar quantas batatas ja existem na geladeira e calcular quantas precisam ser
compradas.

Passos do Algoritmo:

1. Abrir a geladeira:
Inicie o processo verificando a quantidade de batatas disponiveis.

2. Atribuicdo de Variaveis:

« Armazene o nimero de batatas disponiveis na geladeira em uma variavel chamada X.
« Defina a quantidade necessaria para a receita em uma variavel chamada Y (neste caso, Y =
10).

Asimov Academy 13

Introdugdo a logica de programacao

3. Calculo da Diferenca:
« Calcule a variavel Z como a diferenca entre Y e X (ou seja, Z=Y - X).
4. Decisao Baseada em Condicao:

«+ Se Z for maior que 0 (ou seja, se houver uma quantidade insuficiente de batatas), entao:

- Pegar a carteira.

- Irao supermercado.

- Comprar exatamente Z batatas.
- Voltar para casa.

« Se Z for menor ou igual a 0, nenhuma compra é necessaria, pois ja ha batatas suficientes
para a receita.

Observacao:
Este exemplo demonstra a importancia de utilizar variaveis para armazenar informacdes e realizar
calculos que permitam tomar decisdes baseadas nos dados coletados.

Exemplo Pratico: Algoritmo de Aferi¢do do Tempero

Apds preparar o puré, é necessario verificar se a quantidade de sal esta adequada. Para isso, utiliza-se
uma estrutura de repeticdo (laco ou looping) para ajustar o tempero conforme necessario.

Cenario:

+ Objetivo: Garantir que o puré esteja com o tempero adequado.
+ Processo:

1. Provar o puré para verificar o nivel de sal.
2. Se o puré estiver sem sal suficiente, adicionar sal.
3. Repetir o processo até que o sal esteja na medida correta.

Estrutura do Algoritmo:

1. Verificar a Situacgao Inicial:

+ Provar o puré e definir uma condicdo baseada na quantidade de sal (por exemplo, “sal
insuficiente”).

2. Estrutura de Repeticao (“Enquanto” ou loop):

Asimov Academy 14

Introdugdo a logica de programacao

+ Enquanto a condi¢do “sal insuficiente” for verdadeira:
- Adicionar sal.
- Provar novamente o puré.
+ O loop encerra quando a condigdo for falsa (ou seja, quando o tempero estiver adequado).
Licao:
A estrutura de repeticdo permite que um mesmo conjunto de a¢oes seja executado diversas vezes

até que um critério de parada seja atingido. Essa abordagem é fundamental para situa¢des em que o
processo precisa ser ajustado dinamicamente.

Conclusao

Nesta aula foram abordados conceitos importantes sobre algoritmos:

+ Ordem dos Passos:
A sequéncia correta é essencial para que o algoritmo cumpra seu objetivo.

« Uso de Variaveis:
Variaveis armazenam informacdes que podem ser manipuladas para tomar decisdes (por exem-
plo, calcular a quantidade necessaria de batatas).

+ Estruturas de Repeticao:
Lacos como o “enquanto” permitem que um processo seja repetido até que uma condicdo
desejada seja alcangada.

Esses elementos - a ordem légica dos passos, o uso de variaveis e a implementacdo de lacos - sdo
pilares fundamentais na programacao, permitindo a construcao de algoritmos robustos e eficientes.

Asimov Academy 15

Introdugdo a logica de programacao

07. Estrutura dos algoritmos

Nesta parte do curso, vamos entender a estrutura geral dos algoritmos. Essa explicagdo é bem sucinta e
visa esclarecer que, na maioria dos casos, um algoritmo pode ser dividido em trés partes fundamentais:
entrada, processamento e saida.

Estrutura Geral dos Algoritmos

Todo algoritmo tem um objetivo a ser alcangado. Para cumprir esse objetivo, ele pode necessitar de:

« Entrada:
Sao os dados fornecidos ao algoritmo para que ele inicie seu processo. Por exemplo, no algoritmo
do puré de batatas, a entrada pode ser a quantidade de batatas que ja estdo disponiveis e a
quantidade necessaria para a receita.

+ Processamento:
Esta é a etapa em que o algoritmo realiza os calculos ou operag¢des necessarias para transformar
os dados de entrada em um resultado Gtil. No exemplo do puré, o processamento envolve
calcular a diferenca entre a quantidade necessaria e a quantidade disponivel.

« Saida:
E o resultado final obtido ap6s o processamento dos dados. No caso do puré, a saida é a
quantidade de batatas que precisa ser comprada, ou mesmo o puré pronto, se o algoritmo incluir
0 preparo.

Exemplos Praticos
Exemplo 1: Algoritmo do Puré de Batatas

1. Entrada:

« Quantidade de batatas disponiveis na geladeira (registrada em uma variavel, por exemplo,
X).

+ Quantidade necessaria para a receita (definida em outra variavel, por exemplo, Y, que pode
ser 10).

2. Processamento:
« Calcular a diferenca (Z) entre o valor necessario e o valor disponivel (Z=Y - X).

3. Saida:

Asimov Academy 16

Introdugdo a logica de programacao

« Se Z for maior que 0, o algoritmo indica que é necessario comprar batatas suficientes para
atingir o total desejado.

« SeZforiguala0ou negativo, significa que ndo ha necessidade de compra, pois a quantidade
disponivel ja é suficiente ou excede o necessario.

Exemplo 2: Algoritmo de um Sistema de GPS

4. Entrada:

+ Ponto de partida (localizacdo atual).
« Destino (local para onde deseja ir).

5. Processamento:

+ O algoritmo acessa dados de mapas, analisa o transito e outras informacoes relevantes
para calcular a melhor rota.

6. Saida:

« Arotaideal parair do ponto A ao ponto B, exibida ao usuario.

Exercicio Proposto

Para fixar o conteido, proponha a si mesmo o seguinte desafio:

Problema:
Desenvolver um algoritmo para calcular a média das notas de alunos de uma turma, considerando
quatro provas (primeiro, segundo, terceiro e quarto trimestres).

Tarefa:

« ldentifique a Entrada:
Quais sdo os dados necessarios para o calculo? (Exemplo: as notas de cada uma das quatro
provas.)

+ Defina o Processamento:
Quais operagoes precisam ser realizadas? (Exemplo: somar as quatro notas e dividir o resultado
por4.)

+ Determine a Saida:
Qual é o resultado esperado? (Exemplo: a média das notas.)

Na proxima aula, a solucdo sera apresentada e vocé podera comparar com sua abordagem.

Asimov Academy 17

Introdugdo a logica de programacao

08. Elementos basicos da programacao

Nesta aula, vamos retomar a resposta do exercicio proposto anteriormente e aprofundar a compreen-
sdo sobre a estrutura de um algoritmo, destacando as trés partes essenciais - entrada, processamento
e saida - e introduzindo os elementos basicos que compbem qualquer programa.

Resolucdo do Exercicio: Calculo da Média das Notas

Para calcular a média das notas de um aluno considerando quatro provas, o algoritmo desenvolvido
pode ser dividido em trés partes:

1. Entrada:

« Receber as notas de cada aluno.
« Cada nota é registrada em uma variavel (por exemplo, N1, N2, N3 e N4).

2. Processamento:

« Somar os valores das notas: Soma = N1 + N2 + N3 + N4.
« Dividir o resultado por 4 para obter a média: Média = Soma / 4.

3. Saida:

« Apresentar o valor da média para o usuario.
« Asaida pode ser exibida natela ou utilizada para outras operacdes, conforme a necessidade.

Esse exemplo simples evidencia a estrutura fundamental dos algoritmos, que se baseia na correta
definicdo dos dados de entrada, no processamento adequado e na apresentacdo da saida.

Consideragoes sobre a Estrutura dos Algoritmos

Sempre que trabalhamos com algoritmos, lembramos que eles se caracterizam por uma sequéncia
de passos finitos e organizados, os quais permitem que um problema seja resolvido de maneira
sistematica. A estrutura apresentada neste exercicio - entrada, processamento e saida - é a base para
muitos outros algoritmos, independentemente da complexidade da tarefa.

Importancia da Ordem dos Passos

Um ponto crucial é a ordem em que as instrugdes sdo executadas. Por exemplo, se uma etapa essencial
(como “pegar a carteira” no caso de uma compra) for posicionada depois de uma acao que depende

Asimov Academy 18

Introdugdo a logica de programacao

dela (ir ao supermercado), o algoritmo ndo alcancara seu objetivo e retornard um erro. Assim, a correta
ordenacdo dos passos é fundamental para garantir que o algoritmo cumpra a fungéo para a qual foi
projetado.

Elementos Basicos da Programagao

Além da estrutura de entrada, processamento e saida, todos os programas e algoritmos sao construidos
a partir de elementos fundamentais. Esses elementos, quando combinados de diferentes formas,
possibilitam a criagao de qualquer software ou aplicativo. A seguir, sao listados os cinco elementos
basicos:

4. Variaveis e Constantes:

« Utilizadas para armazenar informagdes que serao manipuladas ao longo do algoritmo.
5. Operadores:

« Permitem realizar operagGes matematicas, légicas e de comparagdo entre os dados.
6. Estruturas de Controle de Fluxo:

« Incluem condicionais (como “se” ou “caso contrario”) que direcionam a execugao do algo-
ritmo de acordo com determinadas condicdes.

7. Lagos (ou Estruturas de Repeticao):

+ Permitem que uma sequéncia de instrugdes seja repetida enquanto uma condigao for
verdadeira, possibilitando a automatizacdo de processos iterativos.

8. Métodos:

« Sdo agrupamentos de instrugGes que executam uma funcdo especifica, facilitando a orga-
nizacdo e a reutilizagdo do codigo.

Cada programa que voceé construir sera, na verdade, uma combinagado desses elementos. Eles formam
a “caixinha de ferramentas” da programacao e sao essenciais para a criagdo de algoritmos eficientes e
funcionais.

Conclusao

Nesta aula, revisamos a resolucdo do exercicio sobre o calculo da média das notas, enfatizando a
importancia de definir claramente as trés partes de um algoritmo: entrada, processamento e saida.

Asimov Academy 19

Introdugdo a logica de programacao

Além disso, apresentamos os elementos basicos da programacao que servirdo de base para o desen-
volvimento de projetos mais complexos.

Na préxima aula, iniciaremos um estudo mais aprofundado sobre variaveis e constantes, explorando
como esses elementos sdo utilizados para armazenar e manipular dados em um programa.

Asimov Academy 20

Introdugdo a logica de programacao

09. Variaveis

Nesta aula, iniciaremos o estudo sobre variaveis (e, de forma complementar, constantes), elementos
essenciais para armazenar e manipular informagées na memaria de um computador. ## A Meméria do
Computador

Para compreender o papel das variaveis, é importante entender como funciona a memoéria de um
computador. Os computadores possuem diferentes tipos de meméria, sendo a meméria RAM (Random
Access Memory) uma das mais importantes para a execu¢ao de programas. Ela funciona como uma
memodria de curto prazo, onde sdo armazenadas informacgdes temporarias enquanto os programas
estdo em execucdo, permitindo acesso rapido e eficiente.

Podemos fazer uma comparacgao simples:

« A memoéria RAM se assemelha a nossa meméria de curto prazo, onde conseguimos acessar
informacdes de forma rapida, mas com capacidade limitada.

« Ja o armazenamento em disco (HD ou SSD) seria similar a um documento ou livro que contém
informacgdes que ndo precisamos acessar tao rapidamente.

Durante a execugdo de um programa, as variaveis sao armazenadas na memoria RAM para que possam
ser rapidamente manipuladas e atualizadas conforme necessario.

O Que Sao Variaveis?

Uma variavel é um espaco reservado na memdria do computador destinado a armazenar um determi-
nado tipo de dado. Esse espaco pode receber, modificar ou apagar informacdes durante a execucao
do programa. Assim, mesmo que uma variavel possa assumir diferentes valores ao longo do tempo,
ela guarda apenas um valor de cada vez.

Imagine que vocé tenha um papel onde pode anotar uma informacao; a qualquer momento vocé pode
apagar o que estava escrito e colocar uma nova informagdo, mas sé havera um dado escrito naquele
papel a cada instante. Esse é o comportamento de uma variavel.

Exemplos do Cotidiano

+ Contagem de Itens:
Em um algoritmo para preparar um puré de batatas, vocé pode usar uma variavel para armazenar
a quantidade de batatas disponiveis e outra para definir a quantidade necessaria para a receita.

« Cadastro de Usuarios:
Em um sistema de cadastro, pode-se criar variaveis para armazenar o nome, a idade, a senha e

Asimov Academy 21

Introdugdo a logica de programacao

outros dados do usuario. Cada informacao é guardada separadamente e pode ser utilizada pelo
programa conforme necessario.

Tipos de Dados das Variaveis

Variaveis podem ser de diferentes tipos, e isso determina a forma como elas armazenam e manipulam
os dados. Os tipos basicos mais comuns sao:

« Numéricas:
Usadas para armazenar valores numéricos (inteiros ou decimais).

« Caractere (ou Strings):
Utilizadas para armazenar sequéncias de caracteres, como nomes e descri¢des.

« Alfanuméricas:
Uma combinagdo de nimeros e letras, muito comum em senhas e codigos.

« Légicas (Booleanas):
Representam valores de verdadeiro ou falso, usados para decisdes no programa (por exemplo,
para indicar se uma condi¢do é atendida ou n3o).

Cada tipo de dado ocupa um espaco diferente na memoria, e varidveis booleanas, por exemplo,
geralmente requerem menos espago do que variaveis que armazenam textos ou nimeros complexos.

Variaveis e Constantes

Embora o foco aqui seja nas variaveis, é importante mencionar que existem também as constantes.
Enquanto variaveis podem ter seus valores alterados durante a execugdo do programa, constantes sao
utilizadas para armazenar valores que ndo devem mudar. Essa distingdo ajuda a manter o c6digo mais
organizado e previsivel.

Consideracoes Finais

+ Flexibilidade:
Variaveis permitem que os programas sejam dinamicos, ja que podem assumir valores diferentes
conforme as necessidades do processo.

- Armazenamento Temporario:
Como as variaveis ficam na memaria RAM, elas oferecem acesso rapido, mas os dados nelas
armazenados sdo perdidos quando o programa é encerrado.

Asimov Academy 22

Introdugdo a logica de programacao

+ Tipos de Dados:
Conhecer os diferentes tipos de dados é fundamental para manipular as informacgées correta-
mente e otimizar o uso da memoria.

Asimov Academy 23

Introdugdo a logica de programacao

10. Operadores

Depois de aprendermos a armazenar dados por meio das variaveis, é hora de entender como manipula-
los. Para transformar esses dados e chegar ao resultado desejado, usamos os operadores. Eles sdo
as ferramentas que nos permitem realizar calculos, comparacoes e tomar decisGes com base em
diferentes condicoes.

Tipos de Operadores
1. Operadores Aritméticos

Esses operadores sdo os mesmos que usamos para fazer contas na escola. Eles operam sobre nimeros
e retornam resultados numéricos. Alguns dos principais sdo:

+ Adicao: +
Exemplo: 3 + 5resultaem 8.

+ Subtracao: -
Exemplo: 10 - 4resultaem 6.

+ Multiplicacdo: *
Exemplo: 7 * 3resultaem 21.
- Divisao: /
Exemplo: 20 / 5resultaem 4.
+ Exponenciagao: * *
Exemplo: 2 ** 3resultaem 8 (equivalente a 2 elevado a 3° poténcia).

Observagdo: Em Python, os operadores aritméticos fazem sentido apenas quando aplicados a nimeros.
No entanto, o operador + pode ser usado para concatenar strings, unindo textos. Por exemplo, "01a "
+ "Mundo" resultaem "O1la Mundo'. Jatentar somar um nimero com uma string sem conversao
resultard em erro,comoem 3 + "Python".

2. Operadores Relacionais

Os operadores relacionais servem para comparar dois valores ou variaveis e retornam um valor
booleano, isto é, verdadeiro ou falso. Eles sdo fundamentais para decisGes em algoritmos. Alguns
exemplos:

« lguala: ==
Exemplo: 5 == 5resultaem verdadeiro.

Asimov Academy 24

Introdugdo a logica de programacao

+ Diferentede: ! =
Exemplo: 3 != 4resultaem verdadeiro.

« Maior que: >
Exemplo: 7 > 4resultaem verdadeiro.

« Menor que: <
Exemplo: 2 < 5resultaem verdadeiro.

+ Maiorouiguala: >=
Exemplo: 5 >= 5resultaem verdadeiro.

« Menorouiguala: <=
Exemplo: 3 <= 7resultaem verdadeiro.

Observagdo: Esses operadores podem ser aplicados tanto a nimeros quanto a outros tipos de dados
(como strings) dependendo da linguagem, mas o retorno sempre sera um valor booleano (verdadeiro
ou falso).

3. Operadores Logicos

Os operadores logicos sdo usados para combinar condi¢Ges (geralmente valores booleanos) e tomar
decisGes mais complexas. Sdo Uteis quando precisamos que duas ou mais condi¢Oes sejam verificadas
simultaneamente. Os principais operadores logicos sao:

« E (AND):
Retorna verdadeiro somente se todas as condi¢coes forem verdadeiras.
Exemplo:
Para jogar ténis, é necessario que esteja chovendo e que a temperatura esteja acima de 10
graus. Ambas as condi¢cdes devem ser satisfeitas para que a acdo seja realizada.

« Ou (OR):
Retorna verdadeiro se pelo menos uma das condi¢des for verdadeira.
Exemplo:
Para assistir futebol, pode ser suficiente que ou haja cerveja na geladeira ou que sua namorada
ndo esteja em casa.

« Nao (NOT):
Inverte o valor l6gico de uma condigdo. Se a condicdo for verdadeira, NOT a torna falsa, e vice-
versa.
Exemplo:
Se uma condicdo indica que a louga esta limpa, o operador NOT pode ser usado para indicar
que, na verdade, ela ndo esta.

Asimov Academy 25

Introdugdo a logica de programacao

Observagdo: Os operadores logicos trabalham com valores booleanos (verdadeiro ou falso) e podem
ser combinados para formar expressdes mais complexas.

A Combinacao dos Operadores

Na pratica, o poder da programacdo se manifesta quando combinamos diferentes operadores para
manipularvariaveis e tomar decis6es. Por exemplo, podemos usar operadores aritméticos para calcular
valores, operadores relacionais para comparar esses valores e operadores logicos para definir se certas
acoes devem ou nao ser executadas.

Imagine um cenario em que vocé precise verificar se um aluno passou de ano. Vocé pode combinar
operadores para verificar se a média do aluno é maior ou igual a uma determinada nota e, a0 mesmo
tempo, confirmar se todos os critérios de frequéncia foram atendidos.

Conclusao

Os operadores sao essenciais para o processamento de dados. Eles permitem:

+ Incrementar e decrementar valores.
« Comparar informacdes.
« Tomar decisdes com base em condi¢des especificas.

Cada tipo de operador tem seu papel, e a habilidade de combina-los é fundamental para resolver
problemas e construir algoritmos robustos. Quando comecar a programar na pratica, esses conceitos
se tornardo ferramentas indispensaveis para a construcdo de soluces eficientes.

Asimov Academy 26

Introdugdo a logica de programacao

11. Estruturas de controle de fluxo

O proximo elemento basico que vamos abordar sdo as estruturas de controle de fluxo. As estruturas de
controle de fluxo sdo fundamentais em qualquer linguagem de programacao, pois permitem a tomada
de decisOes para executar tarefas diferentes com base em condicGes especificas.

O Condicional “Se”

No Python, a estrutura de controle de fluxo mais fundamental é o “se” (if). Curiosamente, todas as
outras estruturas derivam dele. Se vocé ja teve contato com légica de programacao ou outra linguagem,
percebera que ha diversas variagOes e derivacdes dessa estrutura, mas a esséncia é sempre a mesma.

Uma estrutura de controle de fluxo permite tomar decisGes no codigo, escolhendo entre diferentes
caminhos. Um exemplo pratico do cotidiano seria decidir ir ao supermercado comprar ovos baseado
em uma condicdo: “Se nao houver ovos em casa, compre mais”. Em programacao, esse conceito se
traduz na seguinte logica:

if ovos_acabaram:
comprar_ovos ()

Decisoes Simples e Completas

Aestrutura “se” pode ser usada de forma simples, onde uma acdo é executada apenas se uma condicado
for verdadeira. No entanto, também podemos incluir um “se nao” (else) para definir um caminho
alternativo caso a condicao inicial ndo seja atendida.

Exemplo de Condicional Simples:

if chuva:
pegar_guarda_chuva()

Exemplo de Condicional Completa:

if chuva:
pegar_guarda_chuva()
else:
sair_normalmente()

Asimov Academy 27

Introdugdo a logica de programacao

O Papel dos Booleanos

A estrutura “se” sempre avalia expressoes que resultam em Verdadeiro ou Falso (booleanos). Assim
como na vida real, uma decisdo é tomada com base em uma resposta “sim” ou “ndo”. No cddigo, essas
expressoes podem envolver comparagdes, como > (maior que), < (menor que) e == (igualdade):
if idade >= 18:

print("Pode dirigir")

else:
print('""Nao pode dirigir")

Conclusao

As estruturas de controle de fluxo sdo fundamentais na programacgao, pois permitem que nossos
codigos se comportem de maneira dindmica e inteligente. O “se” é a base de todas as decisGes logicas
dentro de um programa e, a partir dele, podemos criar fluxos de execu¢do que se adaptam a diferentes
condicdes.

Com essas ferramentas, ja podemos construir programas que reagem ao ambiente e as informacdes
fornecidas, tomando decisGes como fazemos no dia a dia.

Asimov Academy 28

Introdugdo a logica de programacao

12. Estruturas de Repeticao

As estruturas de repeticdo sdo fundamentais na logica de programacdo. Elas permitem que um
determinado trecho de cddigo seja executado diversas vezes enquanto uma condicdo continuar sendo
verdadeira. Isso é essencial para automatizar tarefas repetitivas dentro de um programa.

Um exemplo simples que ilustra esse conceito é a acdo de lavar louga: enquanto houver louga suja, o
processo de lavagem continua. Esse ciclo se repete até que a condi¢do ndo seja mais verdadeira.

Estrutura “Enquanto” (While)

A estrutura “enquanto” verifica se uma condicdo é verdadeira antes de executar um bloco de cddigo.
Se a condigdo permanecer verdadeira, o bloco sera repetido até que ela se torne falsa.

Exemplo de Algoritmo

1. Execute acdo A.
2. Execute agdo B.

3. Enquanto a condicao C for verdadeira:

+ Execute determinada tarefa.
« Verifique novamente a condicao C.

« Caso ainda seja verdadeira, repita o processo.

Essa estrutura garante que o programa continue executando até que a condicdo seja alterada para
falsa.

Perigo do Loop Infinito

Um dos principais erros cometidos ao utilizar estruturas de repeticdo é esquecer de modificar a
condicdo dentro do loop. Isso pode levar a um loop infinito, onde o programa continua rodando
indefinidamente sem nunca encerrar a execucao.

Exemplo de Erro:

Se uma pessoa recebe a instru¢do “Enquanto a louca estiver suja, fique sentado”, mas ninguém esta
lavando a louca, a condicdo nunca muda, resultando em um estado permanente de espera.

Asimov Academy 29

Introdugdo a logica de programacao

Para evitar esse erro, é essencial garantir que haja uma altera¢do na condi¢do dentro do bloco de
codigo executado pelo “enquanto”.

Rela¢dao com Outras Linguagens

O “enquanto” é uma estrutura de repeticdo encontrada em diversas linguagens de programacao.
No Python, por exemplo, ele é representado pela palavra-chave while. Assim como no caso das
estruturas de controle de fluxo, outras variacdes dessa estrutura sdo derivadas do “enquanto”.

Conclusao

Compreender estruturas de repeticdo é essencial para a programacao, pois elas permitem automatizar
processos e reduzir a quantidade de co6digo necessaria para tarefas repetitivas. O conhecimento
adquirido nesta introducdo servira de base para estudos mais avancados e para a pratica efetiva da
programacao.

Caso tenha ddvidas sobre os conceitos abordados, consulte as aulas anteriores e pratique a imple-
mentac¢ao das estruturas discutidas.

Asimov Academy 30

	01. Bem vindos
	A Importância da Lógica de Programação
	Considerações Finais

	02. O que podemos e não podemos fazer com Python
	A popularidade do Python
	O que é Possível Fazer com Python?
	Pontos Positivos e Negativos do Python
	Pontos Positivos
	Pontos Negativos

	Conclusão

	03. Como tirar suas dúvidas
	Comentários na Plataforma
	Comunidade no Discord
	Stack Overflow: Respostas Rápidas e de Alcance Global
	IA como Ferramenta de Apoio
	A Importância da Autonomia

	04. Apresentação à lógica de programação
	Introdução às Linguagens de Programação
	A Importância de Compreender a Lógica
	Benefícios de Estudar a Lógica de Programação
	Conclusão

	05. O Conceito de Algoritmo
	A Importância dos Algoritmos na Comunicação com o Computador
	Exemplo Prático: Algoritmo de Compras
	Reflexão Sobre o Cotidiano e os Algoritmos
	Conclusão

	06. Exemplos práticos de algoritmos
	Revisão do Exemplo de Compras
	Exemplo Prático: Algoritmo de Purê de Batatas
	Cenário:
	Passos do Algoritmo:

	Exemplo Prático: Algoritmo de Aferição do Tempero
	Cenário:
	Estrutura do Algoritmo:

	Conclusão

	07. Estrutura dos algoritmos
	Estrutura Geral dos Algoritmos
	Exemplos Práticos
	Exemplo 1: Algoritmo do Purê de Batatas
	Exemplo 2: Algoritmo de um Sistema de GPS

	Exercício Proposto

	08. Elementos básicos da programação
	Resolução do Exercício: Cálculo da Média das Notas
	Considerações sobre a Estrutura dos Algoritmos
	Importância da Ordem dos Passos

	Elementos Básicos da Programação
	Conclusão

	09. Variáveis
	O Que São Variáveis?
	Exemplos do Cotidiano

	Tipos de Dados das Variáveis
	Variáveis e Constantes
	Considerações Finais

	10. Operadores
	Tipos de Operadores
	1. Operadores Aritméticos
	2. Operadores Relacionais
	3. Operadores Lógicos

	A Combinação dos Operadores
	Conclusão

	11. Estruturas de controle de fluxo
	O Condicional ``Se''
	Decisões Simples e Completas
	O Papel dos Booleanos

	Conclusão

	12. Estruturas de Repetição
	Estrutura ``Enquanto'' (While)
	Exemplo de Algoritmo

	Perigo do Loop Infinito
	Exemplo de Erro:

	Relação com Outras Linguagens
	Conclusão

