
TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

2

Tecnologia da Informação

TEORIA

SQL (DDL)

SUMÁRIO

GLOSSÁRIO DE TERMOS ... 3

1. SQL (DDL) .. 4

1.1 Introdução à DDL .. 4

1.2 Trabalhando com banco de dados.. 6

1.3 Trabalhando com tabelas ... 8

1.3.1 Comandos básicos .. 8

1.3.2 Restrições ... 19

1.4 Trabalhando com Visões.. 36

1.5 Trabalhando com Índices .. 41

1.6 TEMA AVANÇADO: Trabalhando com Procedures ... 44

1.7 TEMA AVANÇADO: Trabalhando com Triggers .. 47

1.8 TEMA AVANÇADO: Trabalhando com Functions .. 50

1.9 TEMA AVANÇADO: Resumo de Procedure, Trigger e Function 51

2. ESQUEMAS DE AULA ... 52

3. REFERÊNCIAS .. 55

A nossa aula é bem esquematizada, então para facilitar o seu acesso aos esquemas, você
pode usar o seguinte índice:

Esquema 1 – DDL. ... 4
Esquema 2 – Trabalhando com banco de dados. ... 6
Esquema 3 – Trabalhando com Tabelas. ... 14
Esquema 4 – Restrições em SQL. ... 19
Esquema 5 – Trabalhando com visões. ... 38
Esquema 6 – Trabalhando com índices. .. 42

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

3

GLOSSÁRIO DE TERMOS

Constraint ou restrição: especificação de regras para os dados em uma tabela.

Default: valor padrão.

Functions ou funções: rotinas que retornam valores ou tabelas.

Índice ou index: estruturas de acesso auxiliares associados a tabelas, que são utilizados
para agilizar a recuperação de registros em resposta a certas condições de pesquisa.

Replace: substituir algo.

Storage: armazenamento de dados.

Store Procedure ou Procedimento Armazenado: código SQL preparado que você pode
salvar, para que o código possa ser reutilizado repetidamente.

Triggers ou gatilhos: programas armazenados que são executados ou disparados
automaticamente quando alguns eventos ocorrem.

Visão ou view: tabela virtual derivada de outras tabelas. Maneira alternativa de
visualização dos dados. Consulta pré-definida ou armazenada, executada sempre que
referenciada.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

4

1. SQL (DDL)

1.1 Introdução à DDL

A DDL (Data Definition Language) é a sublinguagem do SQL que permite ao utilizador
definir tabelas novas e elementos associados. Os comandos desta linguagem são
CREATE, ALTER, DROP e TRUNCATE. É importante ressaltar que estas instruções
permitem a criação, alteração e exclusão desde o próprio banco de dados até de estruturas
como tabelas, visões, procedimentos e triggers.

Vale ressaltar que há autores que tratam falam em algumas linguagens específicas como:

 VDL (View Definition Language): para a definição de visões.

 SDL (Storage Definition Language): para a definição do armazenamento
ou especificação do esquema interno.

Esquema 1 – DDL.

DDL

Comandos

CREATE
(criação)

ALTER
(alteração)

DROP
(exclusão)

TRUNCATE
(exclusão de

todos os dados)

Sublinguagens

VDL
(visões)

SDL
(armazenamento)

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

5

1- (CESPE - 2018 - STJ - Técnico Judiciário - Desenvolvimento de Sistemas)

Julgue o item a seguir, referente à modelagem de dados.

A DDL (data definition language) é usada para a definição da estrutura do banco de dados
ou do esquema. São comandos DDL: CREATE, TRUNCATE, GRANT e ROLLBACK.

Resolução:

Os comandos da DDL (Data Definition Language) são CREATE, ALTER e DROP (ou
TRUNCATE). GRANT e REVOKE são comandos da DCL (Data Control Language).

Gabarito: Errado.

2- (CESPE - 2015 - MEC – Desenvolvedor) Com relação à linguagem de definição de
dados (DDL) e à linguagem de manipulação de dados (DML), julgue o próximo item.

A DML utiliza o comando CREATE para inserir um novo registro na tabela de dados.

Resolução:

Para inserir dados em uma tabela, o comando utilizado é o INSERT INTO, que faz parte
da DML.

O comando CREATE faz parte da DDL e é usado para criar as estruturas do banco de
dados, como as tabelas, visões e outros elementos.

Gabarito: Errado.

3- (CESPE - 2014 - ANATEL - Analista Administrativo - Desenvolvimento de
Sistemas) Julgue os itens seguintes, a respeito das linguagens de banco de dados.

A DDL (data definition language) é responsável pela especificação da instância do banco de
dados e também pode ser usada para especificar propriedades adicionais dos dados, como
restrições de consistência.

Resolução:

A DDL não especifica a instância, mas sim o esquema do banco de dados.

Gabarito: Errado.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

6

1.2 Trabalhando com banco de dados

Criando um banco de dados

A instrução CREATE DATABASE é usada para criar um banco de dados.

A sintaxe para criar um banco de dados é:

 CREATE DATABASE nome_do_banco;

Exibindo os bancos de dados

A instrução SHOW DATABASES lista os bancos de dados existentes.

SHOW DATABASES;

Excluindo um banco de dados

A instrução DROP DATABASE é usada para deletar um banco de dados existente.

A sintaxe para deletar um banco de dados é:

 DROP DATABASE nome_do_banco;

ATENÇÃO!!!

Para criar ou excluir um banco de dados, deve-se possuir privilégios de administrador.

EXEMPLIFICANDO!!!

Para criar um banco de dados chamado estudo, podemos usar o seguinte comando:

CREATE DATABASE estudo;

Se desejarmos listar os bancos existentes, podemos usar o comando:

SHOW DATABASES;

E, se por qualquer motivo, desejarmos deletar o banco estudo, então usaremos o comando
DROP:

DROP DATABASE estudo;

Esquema 2 – Trabalhando com banco de dados.

Criar uma banco de dados

CREATE DATABASE
nome_do_banco;

Exibir bancos de dados

SHOW DATABASES;

Excluir um banco de dados

DROP DATABASE
nome_do_banco;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

7

4- (CESPE / CEBRASPE - 2021 - APEX Brasil - Analista - Tecnologia da
Informação e Comunicação)

create database pessoa;

O comando SQL apresentado anteriormente criará

a) um banco de dados denominado pessoa;.

b) uma tabela denominada pessoa;.

c) um tipo de dados denominado pessoa;.

d) um esquema denominado pessoa;.

Resolução:

O comando CREATE DATABASE é usado para criar bancos de dados. Assim, o comando
trazido na questão, irá realizar a criação de um banco de dados chamado “pessoa”.

Gabarito: Letra A.

5- (Quadrix - 2021 - CRBM - 4 - Técnico em Informática) Quanto aos sistemas de
bancos de dados e à linguagem de consulta estruturada (SQL), julgue o item.

Em um banco de dados MySQL, para se criar um banco de dados de nome dbEmpresa, é
suficiente executar o comando a seguir. CREATE DATABASE dbEmpresa;

Resolução:

O comando CREATE DATABASE é usado para criar bancos de dados. Assim, o comando

CREATE DATABASE dbEmpresa

Irá criar um banco de dados chamado dbEmpresa.

Gabarito: Certo.

6- (CESPE / CEBRASPE - 2020 - Ministério da Economia - Tecnologia da
Informação - Ciência de Dados) Julgue o item a seguir, a respeito de conceitos de SQL.

O comando CREATE DATABASE TAB é utilizado para criar uma tabela em um banco de
dados.

Resolução:

O comando para criar uma tabela é CREATE TABLE e não CREATE DATABASE.

O comando CREATE DATABASE é usado para criar bancos de dados. Assim, o comando
trazido na questão, irá realizar a criação de um banco de dados chamado “TAB”.

Para criar uma tabela, o comando correto seria:

CREATE TABLE TAB

Gabarito: Errado.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

8

1.3 Trabalhando com tabelas

1.3.1 Comandos básicos

Criando uma tabela

A instrução CREATE TABLE é usada para criar uma nova tabela no banco de dados. A
sintaxe básica dessa instrução é:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

);

Nesse comando, temos a criação de uma tabela com o nome indicado por nome_da_tabela.
As colunas (ou atributos) dessa tabela são determinados pelos elementos coluna1, coluna2
e assim sucessivamente. Além de informar o nome da coluna, o elemento tipo_de_dado
serve para informar qual o tipo de dado da coluna (varchar, integer, date, etc.).

ESCLARECENDO!!!

É importante destacar que os tipos de dados possíveis varia de acordo com o SGBD
sendo utilizado. Como curiosidade, é possível verificar os tipos de dados possíveis no
MySQL Server no seguinte link: https://www.w3schools.com/sql/sql_datatypes.asp.

EXEMPLIFICANDO!!!

Vamos então criar uma tabela para o nosso banco de dados.

CREATE TABLE Pessoas (

 IDPessoa int,

 Sobrenome varchar(255),

 Nome varchar(255),

 Endereco varchar(255),

);

Com esse comando criamos uma tabela chamada Pessoas com as seguintes colunas:
IDPessoa, Sobrenome, Nome e Endereco, sendo IDPessoa do tipo inteiro (int) e os demais
atributos cadeias de caracteres (varchar). A tabela criada é representada a seguir:

IDPessoa Sobrenome Nome Endereço

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

9

Ao utilizar a DDL em conjunto com a DML é possível criar uma tabela a partir de outra
tabela existente. Para isso basta usar o auxílio da cláusula AS conforme sintaxe a seguir:

CREATE TABLE nome_da_nova_tabela AS

 SELECT coluna1, coluna2,...

 FROM nome_da_tabela_existente

 WHERE;

Com essa sintaxe, é possível criar uma nova tabela a partir de uma instrução SELECT.
Tanto a estrutura da seleção quando os dados selecionados serão armazenados na nova
tabela.

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Se quisermos criar uma nova tabela com o nome_cliente e o seu país, podemos usar a
seguinte sintaxe:

CREATE TABLE teste AS

 SELECT Nome_Cliente, Pais

 FROM Clientes;

Para consultar dos dados da nova tabela basta usar o comando a seguir:

SELECT * FROM teste;

O resultado será:

Nome_Cliente Pais

Alfreds Futterkiste Germany

Ana Trujillo Emparedados
y helados

Mexico

Antonio Moreno Taquería Mexico

Blondel père et fils France

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

10

ATENÇÃO!!!

Pessoal, em relação aos comandos da DDL, podemos ter algumas variações dependendo do
SGBD. Como o objetivo dessa aula não é tratar especificamente de nenhum SGBD, quando
necessário, iremos informar as possibilidades de sintaxe para os principais SGBDs de
mercado. Tenha uma noção sobre essas possibilidades, mas não fique preso a decorar todas.

Alterando uma tabela

A instrução ALTER TABLE é usada para adicionar, deletar ou modificar colunas em
uma tabela existente. Essa instrução também pode ser utilizada para adicionar ou deletar
restrições a esta tabela.

Para adicionar uma coluna, usamos a cláusula ADD:

ALTER TABLE nome_da_tabela

ADD nome_da_coluna tipo_de_dado;

Para modificar uma coluna, usamos a cláusula ALTER COLUMN (SQL Server/Access)
ou MODIFY COLUMN (MySQL/Oracle até antes do 10G) ou MODIFY (Oracle 10G e
superiores):

ALTER TABLE nome_da_tabela

ALTER COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY nome_da_coluna tipo_de_dado;

Para deletar uma coluna, usamos a cláusula DROP COLUMN:

ALTER TABLE nome_da_tabela

DROP COLUMN nome_da_coluna;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

11

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Vamos supor que desejamos inserir uma coluna para o número do telefone dos clientes.
Então devemos alterar a estrutura da tabela e inserir um novo atributo:

ALTER TABLE Clientes

ADD telefone varchar(255);

Agora essa tabela terá a seguinte estrutura:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais Telefone

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo
Emparedados y
helados

Ana Trujillo Avda. de la
Constitución
2222

México
D.F.

05021 Mexico

3 Antonio Moreno
Taquería

Antonio Moreno Mataderos
2312

México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place
Kléber

Strasbourg 67000 France

Foi criado o campo telefone, porém você não deseja que sejam inseridos caracteres além de
números. Então você pode trocar o tipo de dados do telefone para permitir apenas números.
Então, poderá usar:

ALTER TABLE Clientes

ALTER COLUMN telefone int;

Agora o campo telefone será do tipo inteiro.

Suponha, contudo, que você não vê mais a necessidade de que haja um telefone nessa tabela,
então você pode simplesmente excluir esse campo:

ALTER TABLE Clientes

DROP telefone;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

12

A estrutura da tabela retorna ao estado anterior.

Excluindo uma tabela

A instrução DROP TABLE é usada para deletar uma tabela existente.

A sintaxe para esse comando é:

DROP TABLE nome_da_tabela;

Essa instrução irá deletar todos os dados da tabela, bem como a própria tabela.

Contudo, você pode desejar excluir apenas os dados da tabela, sem excluir a estrutura
dessa tabela. Para isso, poderá usar o comando TRUNCATE:

TRUNCATE TABLE nome_da_tabela;

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Se desejarmos deletar essa tabela por completo, basta usar o comando DROP TABLE:

DROP TABLE Clientes;

Assim, essa tabela deixará de existir. Não teremos mais os dados e nem mesmo a estrutura.
Assim, caso seja necessária uma tabela para Clientes, deverá ser criada uma nova tabela a
partir de um comando CREATE TABLE.

Se, no entanto, quisermos apenas apagar os dados dessa tabela, mas manter a sua estrutura,
então usaremos o comando TRUNCATE:

TRUNCATE TABLE Clientes;

A estrutura da tabela será preservada, mas os dados serão apagados:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

13

Em esquema temos:

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

14

Esquema 3 – Trabalhando com Tabelas.

T
ra

ba
lh

an
do

 c
om

 T
ab

el
as

Criação

CREATE TABLE nome_da_tabela (
coluna1 tipo_de_dado,
coluna2 tipo_de_dado,

....
);

CREATE TABLE nome_da_nova_tabela AS
SELECT coluna1, coluna2,...

FROM nome_da_tabela_existente

WHERE;

Alteração

Adicionar
coluna

ALTER TABLE nome_da_tabela

ADD nome_da_coluna tipo_de_dado;

Alterar coluna

ALTER TABLE nome_da_tabela

ALTER COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY nome_da_coluna tipo_de_dado;;

Excluir coluna
ALTER TABLE nome_da_tabela

DROP COLUMN nome_da_coluna;

Exclusão

Inclusive a
estrutura DROP TABLE nome_da_tabela;

Somente os
dados TRUNCATE TABLE nome_da_tabela;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

15

7- (CESPE / CEBRASPE - 2020 - Ministério da Economia - Tecnologia da
Informação - Ciência de Dados) Julgue o item a seguir, a respeito de conceitos de SQL.
O comando CREATE DATABASE TAB é utilizado para criar uma tabela em um banco de
dados.

Resolução:

O comando para criar uma tabela é CREATE TABLE e não CREATE DATABASE.

O comando CREATE DATABASE é usado para criar bancos de dados. Assim, o comando
trazido na questão, irá realizar a criação de um banco de dados chamado “TAB”.

Para criar uma tabela, o comando correto seria:

CREATE TABLE TAB;

Gabarito: Errado.

8- (CESPE / CEBRASPE - 2020 - Ministério da Economia - Tecnologia da
Informação - Desenvolvimento de Software)

Tendo como referência o diagrama de entidade relacionamento precedente, julgue o
próximo item, a respeito de linguagem de definição de dados e SQL.

A expressão SQL a seguir permite excluir as notas do aluno de nome Fulano.

truncate from matricula where aluno='Fulano'

Resolução:

TRUNCATE é para deletar todos os dados de uma tabela. Caso se deseje excluir somente
registros específicos, então deve se usar o comando DELETE.

Ademais, o nome do aluno não está na tabela matrícula, mas sim na tabela aluno, então para
deletar é precisa buscar o id desse aluno. O correto seria:

DELETE FROM matricula WHERE aluno = (SELECT id FROM aluno WHERE
nome = ‘Fulano’);

Gabarito: Errado.

9- (CESPE - 2018 - FUB - Técnico de Tecnologia da Informação) Julgue o item
subsecutivo, a respeito de linguagem de definição e manipulação de dados.

O comando DROP TABLE permite excluir do banco de dados a definição de uma tabela e
de todos os seus dados.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

16

Resolução:

A instrução DROP TABLE é usada para deletar uma tabela existente.

A sintaxe para esse comando é:

DROP TABLE nome_da_tabela;

Gabarito: Certo.

10- (CESPE - 2017 - TRE-PE - Analista Judiciário - Análise de Sistemas)

Tabela 3A6AAA

dados da tabela:

ID; nome; idtipo; preco

25; creme; 3; 11,50

31; arroz; 4; 12,50

34; leite; 1; 14,00

42; sabão; 5; 11,00

46; carne; 1; 12,75

48; shampoo; 5; 12,30

58; azeite; 1; 13,25

Assinale a opção que apresenta o comando SQL correto para se incluir um novo campo
idcategoria do tipo INT nos dados da tabela 3A6AAA, denominada tbproduto.

a) ALTER TABLE tbproduto INSERT idcategoria INT;

b) ALTER TABLE tbproduto ADD COLUMN idcategoria INT;

c) UPDATE TABLE tbproduto ADD COLUMN idcategoria INT;

d) ADD COLUMN idcategoria INT IN TABLE tbprodut;

e) UPDATE TABLE ADD COLUMN idcategoria INT IN tbproduto;

Resolução:

Como queremos inserir um novo campo em uma tabela, então devemos usar o comando
ALTER TABLE. Logo, eliminamos c), d) e e).

Para adicionar uma coluna, usamos a cláusula ADD ou ADD COLUMN:

ALTER TABLE nome_da_tabela

ADD nome_da_coluna tipo_de_dado;

Assim, a sintaxe correta está na letra b).

Gabarito: Letra B.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

17

11- (CESPE - 2016 - TCE-PA - Auditor de Controle Externo - Área Informática -
Analista de Suporte) No que concerne à linguagem SQL, julgue o item seguinte.

O comando create table pode ser utilizado para criar tanto uma tabela vazia quanto uma
com dados de outra tabela.

Resolução:

Perfeitamente, o comando CREATE TABLE pode definir uma tabela sem dados ou usar
alguma outra tabela como base.

A sintaxe básica dessa instrução é:

CREATE TABLE nome_da_tabela (
 coluna1 tipo_de_dado,
 coluna2 tipo_de_dado,
 );

Ao utilizar a DDL em conjunto com a DML é possível criar uma tabela a partir de outra
tabela existente. Para isso basta usar o auxílio da cláusula AS conforme sintaxe a seguir:

CREATE TABLE nome_da_nova_tabela AS
 SELECT coluna1, coluna2,...
 FROM nome_da_tabela_existente
 WHERE;

Gabarito: Certo.

12- (FCC - 2019 - TRF - 4ª REGIÃO - Analista Judiciário - Sistemas de Tecnologia
da Informação) Uma Analista digitou o comando TRUNCATE TABLE processos; em um
banco de dados SQL aberto em condições ideais para

a) excluir os dados da tabela, mas não a tabela em si.

b) excluir a estrutura da tabela e os dados nela contidos.

c) juntar a tabela aberta na memória com a tabela processos.

d) bloquear a tabela processos para uso exclusivo de seu usuário.

e) editar a estrutura da tabela em modo gráfico.

Resolução:

A instrução DROP TABLE é usada para deletar uma tabela existente.

A sintaxe para esse comando é:

DROP TABLE nome_da_tabela;

Essa instrução irá deletar todos os dados da tabela, bem como a própria tabela.

Contudo, você pode desejar excluir apenas os dados da tabela, sem excluir a estrutura
dessa tabela. Para isso, poderá usar o comando TRUNCATE:

TRUNCATE TABLE nome_da_tabela;

Gabarito: Letra A.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

18

13- (FCC - 2015 - TRT - 9ª REGIÃO (PR) - Analista Judiciário - Área Apoio
Especializado - Tecnologia da Informação)

Um Analista da área de TI trabalha em uma organização que possui aplicações que utilizam
os SGBDs Oracle 11g e SQL Server. Ele identificou que o comando SQL que está correto
e pode ser aplicado em ambas as plataformas é

a) ALTER TABLE DebTrab ALTER COLUMN NroProcesso integer;

b) ALTER TABLE DebTrab MODIFY NroProcesso int;

c) ALTER TABLE DebTrab ADD DataPartida data;

d) ALTER TABLE DebTrab ADD IndiceAtualiz float;

e) ALTER TABLE DebTrab DROP COLUMN DataPartida;

Resolução:

Vamos analisar cada um dos itens:

a) Incorreto: ALTER COLUMN pode ser usado no SQL Server, mas não no Oracle.

b) Incorreto: MODIFY é usado somente a partir da versão 10g do Oracle, mas não no SQL
Server.

c) Incorreto: o tipo de dados “data” não existe. O correto seria “date”.

d) Correto: para adicionar uma coluna, usamos a cláusula ADD:

ALTER TABLE nome_da_tabela
ADD nome_da_coluna tipo_de_dado;

e) Incorreto: no modelo apresentado, a tabela DebTrab não possui nenhuma coluna
DataPartida e, portanto, não é possível deletar algo que não existe.

Gabarito: Letra D.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

19

1.3.2 Restrições

As restrições SQL (constraints) são usadas para especificar regras para os dados em
uma tabela.

As restrições são usadas para limitar o tipo de dados que podem ser colocados em uma
tabela. Isso garante a precisão e a confiabilidade dos dados na tabela. Se houver alguma
violação entre a restrição e a ação de dados, a ação será abortada.

As restrições podem ser no nível da coluna ou no nível da tabela. As restrições de nível de
coluna se aplicam a uma coluna e as restrições de nível de tabela se aplicam à tabela inteira.

As seguintes restrições são comumente usadas no SQL:

 NOT NULL: Garante que uma coluna não pode ter um valor NULL.

 UNIQUE: Garante que todos os valores em uma coluna sejam diferentes.

 PRIMARY KEY: Uma combinação de NOT NULL e UNIQUE. Identifica
exclusivamente cada linha em uma tabela.

 FOREIGN KEY: Identifica exclusivamente uma linha / registro em outra tabela.

 CHECK: Garante que todos os valores em uma coluna satisfaçam uma condição
específica.

 DEFAULT: Define um valor padrão para uma coluna quando nenhum valor é
especificado.

 INDEX: Usado para criar e recuperar dados do banco de dados muito rapidamente.

Esquema 4 – Restrições em SQL.

Restrições

NOT
NULL UNIQUE PRIMARY

KEY
FOREIGN

KEY CHECK DEFAULT INDEX

Regras para
os dados

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

20

NOT NULL

Por padrão, uma coluna pode conter valores NULL. A restrição NOT NULL impõe a uma
coluna a regra para NÃO aceitar valores NULL. Isso obriga um campo a sempre conter
um valor, o que significa que você não pode inserir um novo registro ou atualizar um
registro sem adicionar um valor a esse campo.

Para definir uma coluna como NOT NULL basta colocar esta cláusula na definição da
coluna durante a criação da tabela ou alterar a coluna informando essa cláusula.

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado NOT NULL,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

);

OU

ALTER TABLE nome_da_tabela

MODIFY coluna2 tipo_de_dado NOT NULL;

EXEMPLIFICANDO!!!

Vamos supor que você deseje que os atributos IDPessoa, Sobrenome e Nome da tabela
Pessoas devam sempre ser preenchidos, isto é, não podem ser NULL. Assim, você pode
utilizar NOT NULL durante a criação da tabela:

CREATE TABLE Pessoas (

 IDPessoa int NOT NULL,

 Sobrenome varchar(255) NOT NULL,

 Nome varchar(255) NOT NULL,

 Endereco varchar(255),

 Cidade varchar(255)

);

Assim, ao tentar inserir dados nessa tabela, deverão sempre ser informados valores para
IDPessoa, Sobrenome e Nome.

Também é possível atribuir a restrição NOT NULL na cláusula ALTER TABLE:

ALTER TABLE Pessoas

MODIFY Cidade varchar(255) NOT NULL;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

21

UNIQUE

A restrição UNIQUE garante que todos os valores em uma coluna sejam diferentes. As
restrições UNIQUE e PRIMARY KEY fornecem uma garantia de exclusividade para uma
coluna ou conjunto de colunas.

Uma restrição PRIMARY KEY tem automaticamente uma restrição UNIQUE. No
entanto, você pode ter muitas restrições UNIQUE por tabela, mas apenas uma restrição
PRIMARY KEY por tabela.

A definição de uma coluna como UNIQUE varia de acordo com o SGBD adotado:

 No SQL Server / Oracle / MS Access:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado UNIQUE,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

);

 No MySQL:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

UNIQUE (coluna1)

);

 No MySQL / SQL Server / Oracle / MS Access para uma ou múltiplas
colunas:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

CONSTRAINT nome_da_restricao UNIQUE (coluna1, coluna2));

);

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

22

Também é possível adicionar uma restrição UNIQUE em uma cláusula ALTER:

 Para uma coluna:

ALTER TABLE nome_da_tabela

ADD UNIQUE (coluna);

 Para uma ou múltiplas colunas:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao UNIQUE (coluna1, coluna2));

Para excluir uma restrição, basta utilizar a cláusula DROP:

 No MySQL, usa-se DROP INDEX (isso mesmo, nesse caso, utiliza-se DROP
INDEX e não DROP UNIQUE):

ALTER TABLE nome_da_tabela

DROP INDEX nome_da_restricao;

 No SQL Server / Oracle / MS Access, usa-se DROP CONSTRAINT:

ALTER TABLE nome_da_tabela

DROP CONSTRAINT nome_da_restricao;

PRIMARY KEY

A restrição PRIMARY KEY identifica exclusivamente cada registro em uma tabela.
As chaves primárias devem conter valores UNIQUE e não podem conter valores NULL,
isto é, uma restrição PRIMARY KEY possui implicitamente uma restrição UNIQUE e
também uma restrição NOT NULL.

Uma tabela pode ter apenas uma chave primária; e na tabela, essa chave primária pode
consistir em colunas únicas ou múltiplas (campos).

A definição de uma coluna como PRIMARY KEY varia de acordo com o SGBD adotado:

 No SQL Server / Oracle / MS Access:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado PRIMARY KEY,

 coluna2 tipo_de_dado;

);

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

23

 No MySQL:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

PRIMARY KEY (coluna1)

);

 No MySQL / SQL Server / Oracle / MS Access para uma ou múltiplas
colunas:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

CONSTRAINT nome_da_restricao PRIMARY KEY (coluna1, coluna2));

);

Também é possível adicionar uma restrição PRIMARY KEY em uma cláusula ALTER:

 Para uma coluna:

ALTER TABLE nome_da_tabela

ADD PRIMARY KEY(coluna);

 Para uma ou múltiplas colunas:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao PRIMARY KEY (coluna1, coluna2));

Para excluir uma restrição, basta utilizar a cláusula DROP:

 No MySQL:

ALTER TABLE nome_da_tabela

DROP PRIMARY KEY;

 No SQL Server / Oracle / MS Access:

ALTER TABLE nome_da_tabela

DROP CONSTRAINT nome_da_restricao;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

24

FOREIGN KEY

Uma FOREIGN KEY é uma chave usada para unir duas tabelas, sendo um campo (ou
conjunto de campos) em uma tabela que se refere à PRIMARY KEY em outra tabela.

A tabela que contém a chave estrangeira é chamada de tabela filha e a tabela que contém a
chave candidata é chamada de tabela de referência ou pai.

A definição de uma coluna como FOREIGN KEY varia de acordo com o SGBD adotado:

 No SQL Server / Oracle / MS Access:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado PRIMARY KEY,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado FOREIGN KEY REFERENCES
tabela_referenciada(chave),

);

 No MySQL:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

PRIMARY KEY (coluna1),

FOREIGN KEY (coluna2) REFERENCES tabela_referenciada (chave)

);

 No MySQL / SQL Server / Oracle / MS Access para uma ou múltiplas
colunas:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

CONSTRAINT nome_da_restricao FOREIGN KEY (coluna1, coluna2))
REFERENCES tabela_referenciada (chave1, chave2);

);

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

25

Também é possível adicionar uma restrição FOREIGN KEY em uma cláusula ALTER:

 Para uma coluna:

ALTER TABLE nome_da_tabela

ADD FOREIGN KEY(coluna) REFERENCES tabela_referenciada (chave);

 Para uma ou múltiplas colunas:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao FOREIGN KEY(coluna1, coluna2)
REFERENCES tabela_referenciada (chave1, chave2);

Para excluir uma restrição, basta utilizar a cláusula DROP:

 No MySQL:

ALTER TABLE nome_da_tabela

DROP FOREIGN KEY coluna;

 No SQL Server / Oracle / MS Access:

ALTER TABLE nome_da_tabela

DROP CONSTRAINT nome_da_restricao;

ATENÇÃO!!!

As chaves estrangeiras podem ser criadas com a definição de cláusulas de exclusão ou
atualização em cascata. Vejamos:

Ao usar a opção ON DELETE CASCADE, quando um registro da tabela que possui a
chave primária associada a esta chave estrangeira for excluído, então os registros associados
também são excluídos. Ex.: ao excluir um determinado País, todos os Estados que estão
associados àquele País são também deletados (a associação é verificada pela chave
estrangeira).

CONSTRAINT nome_da_restricao FOREIGN KEY (coluna1, coluna2)) REFERENCES
tabela_referenciada (chave1, chave2) ON DELETE CASCADE;

Ao usar a opção ON UPDATE CASCADE, quando um registro da tabela que possui a
chave primária associada a esta chave estrangeira for alterado, então os registros associados
também são alterados.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

26

CHECK

A restrição CHECK é usada para limitar o intervalo de valores que pode ser colocado
em uma coluna.

Se você definir uma restrição CHECK em uma única coluna, ela permitirá apenas
determinados valores para essa coluna.

Se você definir uma restrição CHECK em uma tabela, ela poderá limitar os valores em
determinadas colunas com base nos valores de outras colunas na linha.

A definição restrição CHECK varia de acordo com o SGBD adotado:

 No SQL Server / Oracle / MS Access:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado CHECK (condicao),

 coluna3 tipo_de_dado,

);

 No MySQL:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

 CHECK (condicao)

);

 No MySQL / SQL Server / Oracle / MS Access para uma ou múltiplas
colunas:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado,

 coluna3 tipo_de_dado,

CONSTRAINT nome_da_restricao CHECK (condicao1 AND condicao2));

);

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

27

Também é possível adicionar uma restrição CHECK em uma cláusula ALTER:

 Para uma condição:

ALTER TABLE nome_da_tabela

ADD CHECK (condicao);

 Para uma ou múltiplas condições:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao CHECK (condicao1 AND condicao2));

Para excluir uma restrição, basta utilizar a cláusula DROP:

 No MySQL:

ALTER TABLE nome_da_tabela

DROP CHECK nome_da_restricao;

 No SQL Server / Oracle / MS Access:

ALTER TABLE nome_da_tabela

DROP CONSTRAINT nome_da_restricao;

EXEMPLIFICANDO!!!

Vamos supor que você deseje definir que todos as Pessoas de sua tabela devem ter uma
idade superior a 18 anos. Então você pode colocar essa regra em uma cláusula CHECK:

CREATE TABLE Pessoas (

 IDPessoa int NOT NULL,

 Sobrenome varchar(255) NOT NULL,

 Nome varchar(255) NOT NULL,

 Endereco varchar(255),

 Cidade varchar(255),

 Idade int CHECK (Idade>18)

);

Assim, somente será possível cadastrar pessoas com idade maior que 18 anos.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

28

DEFAULT

A restrição DEFAULT é usada para fornecer um valor padrão para uma coluna. O valor
padrão será adicionado a todos os novos registros SE nenhum outro valor for especificado.

A definição restrição DEFAULT pode ser realizada com a seguinte sintaxe:

CREATE TABLE nome_da_tabela (

 coluna1 tipo_de_dado,

 coluna2 tipo_de_dado DEFAULT valor,

 coluna3 tipo_de_dado,

);

Também é possível adicionar uma restrição DEFAULT em uma cláusula ALTER:

 No MySQL:

ALTER TABLE nome_da_tabela

ALTER coluna SET DEFAULT valor;

 No SQL Server:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao DEFAULT valor;

 No Oracle:

ALTER TABLE nome_da_tabela

MODIFY coluna DEFAULT valor;

Para excluir uma restrição, basta utilizar a cláusula DROP:

 No MySQL:

ALTER TABLE nome_da_tabela

ALTER coluna DROP DEFAULT;

 No SQL Server / Oracle / MS Access:

ALTER TABLE nome_da_tabela

ALTER COLUMN coluna DROP DEFAULT;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

29

14- (FCC - 2019 - SEFAZ-BA - Auditor Fiscal - Tecnologia da Informação - Prova
II) Em um banco de dados aberto e em condições ideais há uma tabela chamada
Contribuinte cuja chave primária é idContribuinte. Há também uma tabela chamada
Imposto cuja chave primária é idimposto. Para criar uma tabela de associação chamada
Contribuinte_imposto cuja chave primária é composta pelos campos idContribuinte e
idImposto, que são chaves estrangeiras resultantes da relação dessa tabela com as tabelas
Contribuinte e Imposto, utiliza-se a instrução SQL

a) CREATE TABLE Contribuinte_Imposto(idContribuinte INT, idImposto INT,
PRIMARY KEY (idContribuinte), FOREIGN KEY (idContribuinte) REFERENCES
Contribuinte (idContribuinte), PRIMARY KEY (idImposto), FOREIGN KEY
(idContribuinte) REFERENCES Contribuinte (idContribuinte));

b) CREATE TABLE Contribuinte_Imposto(idContribuinte INT NOT NULL, idImposto
INT NOT NULL, PRIMARY KEY (idContribuinte, idImposto), CONSTRAINT fk1
FOREIGN KEY (idContribuinte) REFERENCES Contribuinte (idContribuinte),
CONSTRAINT fk2 FOREIGN KEY (idImposto) REFERENCES Imposto (idImposto));

c) CREATE TABLE Contribuinte_Imposto(idContribuinte INT NOT NULL, idImposto
INT NOT NULL, PRIMARY KEY (idContribuinte, idImposto), FOREIGN KEY
(idContribuinte) SOURCE Contribuinte (idContribuinte), FOREIGN KEY (idImposto)
SOURCE Imposto (idImposto));

d) CREATE TABLE Contribuinte_Imposto(idContribuinte INT NOT NULL, idImposto
INT NOT NULL, PRIMARY KEY (idContribuinte, idImposto), FOREIGN KEY
(idContribuinte, idImposto) REFERENCES (Contribuinte!idContribuinte,
Imposto!idImposto));
e) CREATE TABLE Contribuinte_Imposto(idContribuinte INT NOT NULL, idImposto
INT NOT NULL, PRIMARY KEY (idContribuinte, idImposto), FOREIGN KEY
(idContribuinte, idImposto) REFERENCES all parents);

Resolução:

Vamos analisar cada um dos itens:

a) Incorreto: a restrição PRIMARY KEY deve ser única na tabela. Caso a chave fosse
simples, poderia ser adotada a definição PRIMARY KEY (atributo).

b) Correto: esse comando realiza a criação da tabela conforme solicitado no item. Vamos
explicar o comando por partes:

Criação da tabela com os dois atributos solicitados:

CREATE TABLE Contribuinte_Imposto(idContribuinte INT NOT NULL,
idImposto INT NOT NULL,

Definição da chave primária formada pelos dois atributos:

PRIMARY KEY (idContribuinte, idImposto),

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

30

Definição das chaves estrangeiras:

CONSTRAINT fk1 FOREIGN KEY (idContribuinte) REFERENCES Contribuinte
(idContribuinte), CONSTRAINT fk2 FOREIGN KEY (idImposto) REFERENCES
Imposto (idImposto));

Nesse caso temos a definição de duas restrições fk1 e fk2, uma para cada parte da chave
estrangeira.

c) Incorreto: para definir uma chave primária com mais de um atributo, deve-se inserir uma
CONSTRAINT. Ademais, para relacionar uma chave estrangeira com a tabela referenciada
deve-se utilizar a palavra REFERENCES e não SOURCE.

d) Incorreto: para definir uma chave primária com mais de um atributo, deve-se inserir
uma CONSTRAINT. Ademais, como os atributos relacionados por meio da chave
estrangeira são de tabelas diferentes, deve-se utilizar mais de uma cláusula FOREIGN
KEY.

e) Incorreto: mesma justificativa do item d, além de não existir essa referência a all parents,
pois devem ser informados as tabelas e atributos sendo referenciados de acordo com a
sintaxe nome_da_tabela (atributo).

Gabarito: Letra B.

15- (Quadrix - 2019 - CRESS - SC - Assistente de Comunicação e Tecnologia

No que diz respeito aos códigos 1 e 2 da linguagem SQL acima apresentados, julgue o item.

A instrução CREATE TABLE está especificada da forma correta no Código 1.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

31

Resolução:

O comando do Código 1 está totalmente correto. Através desse comando, há a criação da
tabela Assistente_Social com os atributos ID_Func, NomeFunc, Endereco, DataNasc,
Sexo, Salario e ID_Depto.

Foram definidas também duas restrições:

 CONSTRAINT pk_func PRIMARY KEY (ID_Func) define uma restrição de chave
primária, sendo o ID_Func o campo utilizado como chave.

 CONSTRAINT ck_seco CHECK (Sexo='M' or Sexo='F') define uma restrição de
checagem, na qual o atributo sexo deve sempre um caractere 'M' ou 'F'.

Gabarito: Certo.

16- (CESPE - 2016 - TCE-PA - Auditor de Controle Externo - Área Informática -
Analista de Sistema) Julgue o próximo item, relativo à linguagem de definição de dados
(DDL).

A expressão DDL abaixo cria a tabela referente ao diagrama de entidade e relacionamento
apresentado a seguir.

create table tribunal(

tribunal_codigo integer ,

tribunal_descricao varchar(100),

tribunal_pai integer primary key,

constraint fk_tribunal

foreign key (tribunal_codigo)

references tribunal

)

Resolução:

Vamos analisar o comando por partes:

Criação da tabela tribunal:

CREATE TABLE tribunal (

Com os atributos tribunal_codigo, tribunal_descricao e tribunal_pai, sendo este
definido como chave primária:

tribunal_codigo integer,

tribunal_descricao varchar(100),

tribunal_pai integer PRIMARY KEY,

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

32

Com uma restrição de chave estrangeira que faz referência a própria tabela, isto é,
declara um autorrelacionamento:

CONSTRAINT fk_tribunal

FOREIGN KEY (tribunal_codigo)

REFERENCES tribunal

)

Gabarito: Certo.

17- (CESPE - 2016 - POLÍCIA CIENTÍFICA - PE - Perito Criminal - Ciência da
Computação) Em SQL, para alterar a estrutura de uma tabela do banco de dados e incluir
nela uma nova foreign key, é correto utilizar o comando

a) convert

b) group by.

c) alter table.

d) update.

e) insert.

Resolução:

A instrução ALTER TABLE é usada para adicionar, deletar ou modificar colunas em
uma tabela existente. Essa instrução também pode ser utilizada para adicionar ou deletar
restrições a esta tabela.

Para adicionar uma restrição FOREIGN KEY em uma cláusula ALTER:

 Para uma coluna:

ALTER TABLE nome_da_tabela

ADD FOREIGN KEY(coluna) REFERENCES tabela_referenciada (chave);

 Para múltiplas colunas:

ALTER TABLE nome_da_tabela

ADD CONSTRAINT nome_da_restricao FOREIGN KEY(coluna1, coluna2)
REFERENCES tabela_referenciada (chave1, chave2);

Gabarito: Letra C.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

33

18- (CESPE - 2016 - POLÍCIA CIENTÍFICA - PE - Perito Criminal - Ciência da
Computação) Na linguagem SQL, o comando create table é usado para criar uma tabela
no banco de dados; enquanto o relacionamento entre duas tabelas pode ser criado pela
declaração

a) null.

b) primary key.

c) constraint.

d) auto_increment.

e) not null.

Resolução:

O relacionamento é realizado através da chave estrangeira ou foreign key. A chave
estrangeira pode ser definida em uma cláusula CONSTRAINT da seguinte forma:

CONSTRAINT nome_da_restricao FOREIGN KEY (coluna1, coluna2)) REFERENCES
tabela_referenciada (chave1, chave2);

Gabarito: Letra C.

19- (CESPE - 2015 - MEC – Desenvolvedor)

 CREATE TABLE PESSOA (

ID INTEGER NOT NULL,

NOME CHAR(50) NOT NULL UNIQUE,

CPF DECIMAL (11,0) NULL,

NACIONALIDADE INTEGER NOT NULL,

PRIMARY KEY (ID),

FOREIGN KEY (NACIONALIDADE)

REFERENCES TABELA_NACIONALIDADE(CODIGO_NACIONALIDADE)

);

Com base no comando SQL apresentado, julgue o item subsequente.

A cláusula NULL na coluna CPF indica que o conteúdo dessa coluna pode ser zero, já que
ela é do tipo DECIMAL (11,0).

Resolução:

A cláusula NULL indica que o conteúdo de CPF pode ser nulo. Nulo é diferente de zero.

Ao comparar qualquer coisa com NULL usando os operadores lógicos comuns, será
retornado um resultado desconhecido na comparação (UNKNOWN).

Gabarito: Errado.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

34

20- (CESPE - 2015 - MEC – Desenvolvedor) CREATE TABLE PESSOA (

ID INTEGER NOT NULL,

NOME CHAR(50) NOT NULL UNIQUE,

CPF DECIMAL (11,0) NULL,

NACIONALIDADE INTEGER NOT NULL,

PRIMARY KEY (ID),

FOREIGN KEY (NACIONALIDADE)

REFERENCES TABELA_NACIONALIDADE(CODIGO_NACIONALIDADE)

);

Com base no comando SQL apresentado, julgue o item subsequente.

Mais de uma PESSOA pode ter o mesmo NOME e a mesma NACIONALIDADE.

Resolução:

O NOME da PESSOA está definido como UNIQUE, logo não pode ser repetido para mais
de um registro.

A restrição UNIQUE garante que todos os valores em uma coluna sejam diferentes.

Gabarito: Errado.

21- (FCC - 2015 - TRT - 9ª REGIÃO (PR) - Analista Judiciário - Área Apoio
Especializado - Tecnologia da Informação)

Um Analista da área de TI trabalha em uma organização que possui aplicações que utilizam
os SGBDs Oracle 11g e SQL Server. Ele identificou que o comando SQL que está correto
e pode ser aplicado em ambas as plataformas é

a) ALTER TABLE DebTrab ALTER COLUMN NroProcesso integer;

b) ALTER TABLE DebTrab MODIFY NroProcesso int;

c) ALTER TABLE DebTrab ADD DataPartida data;

d) ALTER TABLE DebTrab ADD IndiceAtualiz float;

e) ALTER TABLE DebTrab DROP COLUMN DataPartida;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

35

Resolução:

Vamos analisar cada um dos itens:

a) Incorreto: ALTER COLUMN pode ser usado no SQL Server, mas não no Oracle.

b) Incorreto: MODIFY é usado somente a partir da versão 10g do Oracle.

c) Incorreto: o tipo de dados “data” não existe. O correto seria “date”.

d) Correto: para adicionar uma coluna, usamos a cláusula ADD:

ALTER TABLE nome_da_tabela
ADD nome_da_coluna tipo_de_dado;

e) Incorreto: no modelo apresentado, a tabela DebTrab não possui nenhuma coluna
DataPartida e, portanto, não é possível deletar algo que não existe.

Gabarito: Letra D.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

36

1.4 Trabalhando com Visões

Criando uma visão

A sintaxe a seguir é utilizada para criar uma view em SQL:

CREATE VIEW [Nome da View] AS

 SELECT Coluna1, Coluna2,…

 FROM nome_da_tabela

 WHERE...;

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Se quisermos criar uma view para os clientes mexicanos, podemos usar a seguinte sintaxe:

CREATE VIEW [Mexicanos] AS

 SELECT Nome_Cliente, Cidade

 FROM Clientes

 WHERE Pais=”Mexico”;

Para consultar dos dados da visão basta usar o comando a seguir:

SELECT * FROM [Mexicanos];

O resultado será:

Nome_Cliente Cidade

Ana Trujillo Emparedados y helados México D.F.

Antonio Moreno Taquería México D.F.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

37

Alterando uma visão

Uma visão pode ser atualizada com o comando CREATE OR REPLACE VIEW:

CREATE OR REPLACE VIEW [Nome da View] AS

 SELECT Coluna1, Coluna2,…

 FROM nome_da_tabela

 WHERE...;

Essa instrução na verdade poderá executar duas ações:
1. Caso a visão já exista, então ela será alterada.
2. Caso a visão ainda não exista, então ela será criada.

EXEMPLIFICANDO!!!

Dada a visão [Mexicanos] criada anteriormente, se quisermos alterar a visão para
apresentar também CEP dos clientes, basta alterar a visão usando a cláusula CREATE OR
REPLACE VIEW:

CREATE OR REPLACE VIEW [Mexicanos] AS

 SELECT Nome_Cliente, Cidade, CEP

 FROM Clientes

 WHERE Pais=”Mexico”;

Para consultar dos dados da visão basta usar o comando a seguir:

SELECT * FROM [Mexicanos];

O resultado será:

Nome_Cliente Cidade CEP

Ana Trujillo Emparedados y helados México D.F. 05021

Antonio Moreno Taquería México D.F. 05023

Excluindo uma visão

Uma visão é apagada com o comando DROP VIEW:

DROP VIEW [Nome da View];

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

38

Esquema 5 – Trabalhando com visões.

22- (FCC - 2017 - DPE-RS - Analista - Banco de Dados) O comando SQL para criar
uma visão V1, a partir de uma tabela T1, obtendo os atributos A1, A2 e A3 e os renomeando
para C1, C2 e C3 é:

a) CREATE VIEW V1.C1, V1.C2. V1.C3

 SELECT T1.A1, T1.A2, T1.A3;

b) CREATE VIEW V1 (C1, C2, C3)

AS SELECT A1, A2, A3

FROM T1;

c) CREATE VIEW C1, C2, C3 IN V1

FROM A1, A2, A3 OF T1;

d) CREATE VIEW V1

FROM T1

 SELECT A1 → C1, A2 → C2, A3 → C3;

e) CREATE VIEW V1 (C1, C2, C3)

AS PART OF T1 (A1, A2, A3);

Resolução:

A sintaxe a seguir é utilizada para criar uma view em SQL:

CREATE VIEW [Nome da View] AS

 SELECT Coluna1, Coluna2,…

 FROM nome_da_tabela

 WHERE...;

Assim, vamos definir o comando para o solicitado na questão por partes:

Definição do nome da visão:

CREATE VIEW V1 AS

Seleção dos atributos A1, A2 e A3 da tabela T1:

SELECT A1, A2, A3 FROM T1;

Perceba que para essa seleção não foi definida nenhuma condição e, portanto, não
precisamos utilizar a cláusula WHERE.

Criando uma visão
CREATE VIEW [Nome da View]

AS

SELECT Coluna1, Coluna2,…

FROM nome_da_tabela

WHERE...;

Alterando uma visão

CREATE OR REPLACE VIEW
[Nome da View] AS

SELECT Coluna1, Coluna2,…
FROM nome_da_tabela WHERE...;

Deletando uma visão

DROP VIEW [Nome da View];

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

39

Contudo, para o comando ficar correto precisamos renomear os atributos na definição da
visão. Para isso basta informar os novos nomes entre parênteses após o nome da visão.

CREATE VIEW V1(C1, C2, C3) AS

Gabarito: Letra B.

23- (VUNESP - 2014 - PRODEST-ES - Analista de Tecnologia da Informação -
Desenvolvimento de Sistemas) Considere a tabela T de um banco de dados relacional:

T (ID, Nome, Fone)

Indique a alternativa que contém a consulta SQL correta para criar uma visão V, a partir
da tabela T, apenas para os Nomes começando pela letra J.

a) CREATE VIEW V FOR (SELECT T.ID, T.Nome, T. Fone FOR Nome NEXT ‘J%’)

b) CREATE VIEW V → (SELECT T(ID, Nome, Fone) WHERE Nome NEAR ‘J%’)

c) CREATE VIEW V (SELECT ID, Nome, Fone FROM T WHERE Nome = ‘J%’)

d) CREATE VIEW V AS (SELECT ID, Nome, Fone FROM T WHERE Nome LIKE ‘J%’)

e) CREATE VIEW V FROM (SELECT ID, Nome, Fone OF T WHERE Nome IN ‘J%’)

Resolução:

A sintaxe a seguir é utilizada para criar uma view em SQL:

CREATE VIEW [Nome da View] AS

 SELECT Coluna1, Coluna2,…

 FROM nome_da_tabela

 WHERE...;

Logo, podemos rapidamente identificar que somente o item d) está de acordo com essa
sintaxe, pois é o único que utiliza a palavra-chave AS.

Para selecionar somente os Nomes que começam com a letra J, usa-se o operador LIKE.
Em ‘J%’, temos a condição desejada.

Assim, em CREATE VIEW V AS (SELECT ID, Nome, Fone FROM T WHERE Nome
LIKE ‘J%’) será criada uma visão com base no retorno da consulta prevista no SELECT,
que retorna o ID, o Nome e o Fone da tabela T dos registros que possuem Nome começando
com J.

Gabarito: Letra D.

24- (CESPE - 2016 - TCE-PA - Auditor de Controle Externo - Área Informática -
Analista de Suporte) No que concerne à linguagem SQL, julgue o item seguinte.

Ao se criar uma view, não é necessário que os nomes dos atributos da view sejam os mesmos
dos atributos da tabela.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

40

Resolução:

Os nomes dos atributos nas visões podem ser definidos com bases nos alias ou apelidos.
Sendo assim, não é necessário que o nome dos atributos da visão sejam os mesmos.

Gabarito: Certo.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

41

1.5 Trabalhando com Índices

Criando um índice

A sintaxe a seguir é utilizada para criar um índice em SQL:

CREATE INDEX nome_do_indice

ON nome_da_tabela (coluna1, coluna2, ...);

Também é possível criar um índice único, isto é, em que não são permitidos valores
duplicados. Para isso, utiliza-se CREATE UNIQUE INDEX:

CREATE UNIQUE INDEX nome_do_indice

ON nome_da_tabela (coluna1, coluna2, ...);

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Se quisermos criar um índice para a cidade, podemos usar a seguinte sintaxe:

CREATE INDEX index_cidade

 ON SELECT Clientes (Cidade);

Se quisermos criar um índice ÚNICO para a cidade, podemos usar a seguinte sintaxe:

CREATE UNIQUE INDEX index_cidade

 ON SELECT Clientes (Cidade);

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

42

Alterando um índice

Um índice pode ser atualizado com o comando ALTER INDEX:

ALTER INDEX nome_do_indice

ON nome_da_tabela (coluna1, coluna2, ...);

ATENÇÃO!!!

A sintaxe completa para a alteração de um índice envolve diversas cláusulas específicas do
SGBD. Para nós, isso não importa, basta saber que é possível alterar um índice através de
ALTER INDEX.

Excluindo um índice

Um índice pode ser excluído com o comando DROP INDEX:

DROP INDEX nome_do_indice;

OU

DROP INDEX nome_da_tabela.nome_do_indice;

Esquema 6 – Trabalhando com índices.

25- (FGV - 2012 - Senado Federal - Analista Legislativo - Análise de Suporte de
Sistemas) A DDL da SQL descreve como as tabelas e outros objetos Oracle podem ser
definidos, alterados e removidos. De um modo geral, é a parte utilizada pelo DBA. O
comando que elimina um índice já criado é

a) REMOVE INDEX

b) DELETE INDEX

c) PURGE INDEX

d) ERASE INDEX

e) DROP INDEX

Resolução:

O comando DROP é o único DDL dentre os itens e é o comando utilizado para excluir
estruturas de bancos de dados. Para excluir índices, então usamos DROP INDEX.

Criando um índice

CREATE INDEX
nome_do_indice ON

nome_da_tabela (coluna1,
coluna2, ...);

Alterando um índice

ALTER INDEX
nome_do_indice ON

nome_da_tabela (coluna1,
coluna2, ...);

Excluindo um índice

DROP INDEX nome_do_indice;
OU

DROP INDEX
nome_da_tabela.nome_do_indice;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

43

Gabarito: Letra E.

26- (FUNCAB - 2012 - MPE-RO - Analista de Sistemas) Na criação de uma tabela em
um banco de dados MySQL, o parâmetro UNIQUE do comando CREATE INDEX:

a) define a chave estrangeira.

b) define a chave primária.

c) garante a unicidade de um registro.

d) determina a ordem física das linhas correspondentes em uma tabela.

e) determina a direção de classificação de uma determinada coluna.

Resolução:

O parâmetro UNIQUE em um índice garante que não haverá duplicidade nos registros.

Para isso, utiliza-se CREATE UNIQUE INDEX:

CREATE UNIQUE INDEX nome_do_indice

ON nome_da_tabela (coluna1, coluna2, ...);

Gabarito: Letra C.

27- (CESPE - 2008 - STJ - Técnico Judiciário - Informática) Acerca da linguagem
SQL, usada para fazer a manipulação e a definição de dados em sistemas gerenciadores de
banco de dados, julgue os itens subsequentes.

O comando CREATE INDEX, usado para criar um parâmetro relacionado com uma tabela
para buscar dados mais rapidamente, é considerado como DDL.

Resolução:

Sim, o comando CREATE INDEX é comando DDL. Esse comando permite criar um índice
e possui a seguinte sintaxe básica.

CREATE INDEX nome_do_indice

ON nome_da_tabela (coluna1, coluna2, ...);

Gabarito: Certo.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

44

1.6 TEMA AVANÇADO: Trabalhando com Procedures

DICA DO PROFESSOR!!!

Pessoal, trago uma rápida discussão sobre a sintaxe básica das procedures, mas informo que
esse tema pode ir muito além do que vou expor aqui. Esse é um tema que é pouco cobrado
nas questões, mas trago para que pelo menos você tenha uma noção de como se realiza a
declaração e execução de uma procedure. Não gaste tempo aprofundando esse tema.

Uma STORED PROCEDURE é um código SQL preparado que você pode salvar, para
que o código possa ser reutilizado repetidamente. Portanto, se você tiver uma consulta
SQL que você escreve repetidas vezes, salve-a como um procedimento armazenado e, em
seguida, apenas chame-a para executá-la. Você também pode passar parâmetros para um
procedimento armazenado, para que o procedimento armazenado possa agir com base nos
valores de parâmetro que são passados.

Para criar uma PROCEDURE, basta utilizar a seguinte sintaxe:

CREATE PROCEDURE nome_da_procedure

AS

declaracoes_SQL

GO;

Após criar uma PROCEDURE, você pode executá-la simplemesnte executando uma
chamada com a cláusula EXEC:

EXEC nome_da_procedure

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México D.F. 05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México D.F. 05023 Mexico

Se quisermos criar uma PROCEDURE retornar todos os clientes, podemos usar a seguinte
sintaxe:

CREATE PROCEDURE TodosOsClientes AS

 SELECT * FROM Clientes;

Agora para consultar rapidamente os dados de todos os clientes, basta chamar a Procedure:

EXEC TodosOsClientes;

Aqui demos um exemplo simples, mas as consultas que estão armazenadas em procedures
podem ser bastante complexas e, assim, economizar bastante o tempo de escrita de códigos.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

45

Uma PROCEDURE aceita a definição de parâmetros que podem ser passados quando de
sua chamada. Assim,

CREATE PROCEDURE nome_da_procedure @parametro1 tipo_de_dado,
@parametro2 tipo_de_dado,...

AS

Declarações SQL…

GO;

EXEMPLIFICANDO!!!

Dada a tabela Clientes a seguir:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

2 Ana Trujillo Emparedados
y helados

Ana Trujillo Avda. de la
Constitución 2222

México
D.F.

05021 Mexico

3 Antonio Moreno Taquería Antonio Moreno Mataderos 2312 México
D.F.

05023 Mexico

4 Blondel père et fils Frédérique Citeaux 24, place Kléber Strasbourg 67000 France

Se quisermos criar uma PROCEDURE que receba como parâmetros o nome da cidade e o
CEP desejado, podemos utilizar a sintaxe seguinte:

CREATE PROCEDURE TodosOsClientes @Cidade nvarchar(30), @CEP
nvarchar(10)

AS

SELECT * FROM Clientes WHERE Cidade = @Cidade AND CEP = @CEP

GO;

Com essa PROCEDURE, agora podemos facilmente consultar clientes de cidades e CEPs
específicos. Por exemplo, se desejarmos consultar os clientes de Berlin com CEP 12209,
basta executar a PROCEDURE com os devidos parâmetros:

EXEC TodosOsClientes City = "Berlin", CEP = "12209";

O resultado será:

IDCliente Nome_Cliente Nome_Conhecido Endereco Cidade CEP Pais

1

Alfreds Futterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

46

28- (FCC - 2018 - DPE-AM - Analista em Gestão Especializado de Defensoria -
Analista de Banco de Dados) O comando SQL–ANSI para criar um procedimento
chamado P1, que selecione os atributos A e B, de uma tabela T é:

a) PROCEDURE P1 IS

 SELECT A, B

 FROM T;

b) INSERT PROCEDURE P1 INTO DATABASE AS

 SELECT A, B

 FROM T

c) CREATE PROCEDURE P1()

 SELECT A, B

 FROM T;

d) MAKE PROCEDURE P1 (SELECT A, B

FROM T);

e) PROCEDURE P1 AS

 SELECT A, B

 FROM T

Resolução:

Para criar uma PROCEDURE, basta utilizar a seguinte sintaxe:

CREATE PROCEDURE nome_da_procedure

AS

declaracoes_SQL

GO;

Nesse caso, como queremos criar a PROCEDURE P1 com base na seleção dos atributos A
e B da tabela T, usamos:

CREATE PROCEDURE P1()

AS

SELECT A, B

FROM T;

GO;

Os () vazios indicam que a PROCEDURE não recebe nenhum parâmetro.

Gabarito: Letra C.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

47

1.7 TEMA AVANÇADO: Trabalhando com Triggers

DICA DO PROFESSOR!!!

Trago uma rápida discussão sobre a sintaxe básica das triggers, mas informo que esse tema
pode ir muito além do que vou expor aqui. Esse é um tema pouco cobrado nas questões,
mas trago para que pelo menos você tenha uma noção de como se realiza a declaração e
quais os parâmetros que podem ser usados. Não gaste tempo aprofundando esse tema.

Triggers ou gatilhos são programas armazenados que são executados ou disparados
automaticamente quando alguns eventos ocorrem.

Os triggers são, de fato, escritos para serem executados em resposta a qualquer um dos
seguintes eventos:

 Uma instrução de manipulação de banco de dados (DML) (DELETE, INSERT
ou UPDATE)

 Uma instrução de definição de banco de dados (DDL) (CREATE, ALTER ou
DROP).

 Uma operação de banco de dados (SERVERERROR, LOGON, LOGOFF,
STARTUP ou SHUTDOWN).

A sintaxe para definição de triggers varia de acordo com o SGDB. Vamos ver um exemplo
de sintaxe considerando o Oracle: PROCEDURE

CREATE [OR REPLACE] TRIGGER nome_da_trigger
{BEFORE | AFTER | INSTEAD OF}
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF coluna]
ON tabela
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condicao)
DECLARE
 Declaration-statements
BEGIN
 Executable-statements
EXCEPTION
 Exception-handling-statements
END;

Nessa sintaxe podemos destacar os seguintes elementos:

 A opção [OR REPLACE] permite a modificação de uma TRIGGER caso ela já
exista.

 {BEFORE | AFTER | INSTEAD OF}: especifica quando o trigger será
executado. BEFORE executa a trigger antes do evento. AFTER executa depois

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

48

do evento. A cláusula INSTEAD OF é usada para criar uma trigger em uma
VIEW.

 {INSERT [OR] | UPDATE [OR] | DELETE}: especifica a operação DML.

 [OF coluna]: especifica o nome da coluna que será atualizada.

 [ON tabela]: especifica o nome da tabela associada a trigger.

 [REFERENCING OLD AS o NEW AS n]: permite que você indique valores
novos e antigos para várias instruções DML, como INSERT, UPDATE e
DELETE. Neste caso, os valores antigos são referenciados pelo o e os novos por
n. Os valores antigos também podem ser acessados por :old.nome_do_campo e
os novos com :new.nome_do_campo.

 [FOR EACH ROW]: especifica um acionador em nível de linha, ou seja, o
acionador será executado para cada linha afetada. Caso contrário, o acionador
será executado apenas uma vez quando a instrução SQL for executada, o que é
chamado de acionador de nível de tabela.

 WHEN (condição): fornece uma condição para as linhas para as quais o
acionador dispararia. Esta cláusula é válida apenas para acionadores de nível de
linha.

EXEMPLIFICANDO!!!

O trecho a seguir apresenta um exemplo de Trigger:

CREATE OR REPLACE TRIGGER exibir_mudancas_de_salario

BEFORE DELETE OR INSERT OR UPDATE ON clientes

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_dif number;

BEGIN

 sal_dif := :NEW.salario - :OLD.salario;

 dbms_output.put_line('Salário antigo: ' || :OLD.salario);

 dbms_output.put_line('Salário novo: ' || :NEW.salario);

 dbms_output.put_line('Diferença salarial: ' || sal_dif);

END;

Neste exemplo, a Trigger é criada para ser executada sempre antes (BEFORE) de uma
instrução DELETE, INSERT ou UPDATE na tabela clientes. Ela será chamada para cada
linha afetada pela consulta, pois foi usada a clásula FOR EACH ROW.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

49

29- (VUNESP - 2014 - EMPLASA - Analista Administrativo - Tecnologia da
Informação) Considerando o SQL, o formato geral do comando de criação de gatilhos é:

CREATE TRIGGER < nome do trigger>

< tempo de ação do trigger>

< evento para acionar o trigger>

ON < nome da tabela>

< ação>

O parâmetro < tempo de ação do trigger > possui as seguintes opções válidas:

a) BEFORE e AFTER.

b) BEGIN e END.

c) FIRST e LAST

d) SAME e DIFFERENT.

e) START e FINISH.

Resolução:

A sintaxe para definição de triggers varia de acordo com o SGDB. Vamos ver um exemplo
de sintaxe considerando o Oracle:

CREATE [OR REPLACE] TRIGGER nome_da_trigger

{BEFORE | AFTER | INSTEAD OF}

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF coluna]

ON tabela

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condicao)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

O tempo de ação das triggers pode ser especificado por:

{BEFORE | AFTER | INSTEAD OF}: especifica quando o trigger será executado.
BEFORE executa a trigger antes do evento. AFTER executa depois do evento. A cláusula
INSTEAD OF é usada para criar uma trigger em uma VIEW.

Gabarito: Letra A.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

50

1.8 TEMA AVANÇADO: Trabalhando com Functions

DICA DO PROFESSOR!!!

Trago uma rápida discussão sobre a sintaxe básica das functions, mas informo que esse
tema pode ir muito além do que vou expor aqui. Esse é um tema que varia bastante com
base no SGBD específico sendo utilizado e não vale a pena de ser aprofundado. Sendo assim,
foque em ter uma noção geral, mas não se preocupe em aprofundar esse tema.

Funções ou Functions são rotinas que retornam valores ou tabelas. Com elas você
poderá construir visões parametrizadas ou ainda construir suas próprias funções.

A sintaxe para definição de functions varia de acordo com o SGDB. Vamos ver um exemplo
de sintaxe considerando o Oracle:

CREATE [OR REPLACE] FUNCTION nome_da_funcao

[(nome_do_parametro [IN | OUT | IN OUT] tipo [, ...])]

RETURN return_tipo_de_dados

{IS | AS}

BEGIN

 < corpo da função >

END [nome_da_funcao];

Nessa sintaxe podemos destacar os seguintes elementos:

 A opção [OR REPLACE] permite a modificação de uma FUNCTION caso ela
já exista.

 A função deve conter uma instrução de retorno. A cláusula RETURN especifica o
tipo de dados que você retornará da função.

 Geralmente usa AS para criar uma FUNCTION independente e IS para as
demais.

EXEMPLIFICANDO!!!

O código a seguir apresenta um exemplo de declaração de uma FUNCTION simples:

CREATE OR REPLACE FUNCTION total_de_clientes

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM clientes;

 RETURN total;

END;

Nesse exemplo, é criada uma FUNCTION total_de_clientes que retorna um número. No
corpo da função, é realizada uma contagem da quantidade de clientes da tabela clientes.
Portanto, ao chamar essa função, será realizada essa consulta e retornado esse valor.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

51

1.9 TEMA AVANÇADO: Resumo de Procedure, Trigger e Function

O esquema a seguir diferencia PROCEDURE, TRIGGER e FUNCTION:

Esquema 6 – Procedure x Trigger x Function.

30- (FUNCAB - 2014 - PRODAM-AM - Analista de Banco de Dados) A diferença
básica dos conceitos de trigger e stored procedure é que, respectivamente:

a) são executadas de acordo com um evento, mas não são inclusas no banco de dados.

b) é executada de acordo com um evento; é chamada para ser executada e são inclusas no
banco de dados.

c) são executadas após serem chamadas, porém a primeira não é inclusa no banco de dados.

d) são executadas após serem chamadas, porém a segunda não é inclusa no banco de dados.

e) é chamada para ser executada; é executada de acordo com um evento e não são inclusas
no banco de dados.

Resolução:

Uma trigger é disparada com base em um evento e a procedure pode ser executada com
uma chamada.

Gabarito: Letra B.

PROCEDURE

Código SQL
preparado que

você pode salvar,
para que o código

possa ser
reutilizado

repetidamente

TRIGGER

Programas
armazenados que
são executados ou

disparados
automaticamente
quando alguns

eventos ocorrem.

FUNCTION

Rotinas que
retornam valores

ou tabelas.

PROCEDURE

Código SQL
preparado que

você pode salvar,
para que o código

possa ser
reutilizado

repetidamente

TRIGGER

Programas
armazenados que
são executados ou

disparados
automaticamente
quando alguns

eventos ocorrem.

FUNCTION

Rotinas que
retornam valores

ou tabelas.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

52

2. ESQUEMAS DE AULA

DDL

Trabalhando com banco de dados

DDL

Comandos

CREATE
(criação)

ALTER
(alteração)

DROP
(exclusão)

TRUNCATE
(exclusão de

todos os dados)

Sublinguagens

VDL
(visões)

SDL
(armazenamento)

Criar uma banco de dados

CREATE DATABASE
nome_do_banco;

Exibir bancos de dados

SHOW DATABASES;

Excluir um banco de dados

DROP DATABASE
nome_do_banco;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

53

Trabalhando com Tabelas

T
ra

ba
lh

an
do

 c
om

 T
ab

el
as

Criação

CREATE TABLE nome_da_tabela (
coluna1 tipo_de_dado,
coluna2 tipo_de_dado,

....
);

CREATE TABLE nome_da_nova_tabela AS
SELECT coluna1, coluna2,...

FROM nome_da_tabela_existente

WHERE;

Alteração

Adicionar
coluna

ALTER TABLE nome_da_tabela

ADD nome_da_coluna tipo_de_dado;

Alterar coluna

ALTER TABLE nome_da_tabela

ALTER COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY COLUMN nome_da_coluna tipo_de_dado;

OU

ALTER TABLE nome_da_tabela

MODIFY nome_da_coluna tipo_de_dado;;

Excluir coluna
ALTER TABLE nome_da_tabela

DROP COLUMN nome_da_coluna;

Exclusão

Inclusive a
estrutura DROP TABLE nome_da_tabela;

Somente os
dados TRUNCATE TABLE nome_da_tabela;

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

54

Restrições em SQL

Trabalhando com visões

Trabalhando com índices

Procedures x Trigger x Function

Restrições

NOT
NULL UNIQUE PRIMARY

KEY
FOREIGN

KEY CHECK DEFAULT INDEX

Regras para
os dados

Criando uma visão
CREATE VIEW [Nome da View]

AS

SELECT Coluna1, Coluna2,…

FROM nome_da_tabela

WHERE...;

Alterando uma visão

CREATE OR REPLACE VIEW
[Nome da View] AS

SELECT Coluna1, Coluna2,…
FROM nome_da_tabela WHERE...;

Deletando uma visão

DROP VIEW [Nome da View];

Criando um índice

CREATE INDEX
nome_do_indice ON

nome_da_tabela (coluna1,
coluna2, ...);

Alterando um índice

ALTER INDEX
nome_do_indice ON

nome_da_tabela (coluna1,
coluna2, ...);

Excluindo um índice

DROP INDEX nome_do_indice;
OU

DROP INDEX
nome_da_tabela.nome_do_indice;

PROCEDURE

Código SQL
preparado que

você pode salvar,
para que o código

possa ser
reutilizado

repetidamente

TRIGGER

Programas
armazenados que
são executados ou

disparados
automaticamente
quando alguns

eventos ocorrem.

FUNCTION

Rotinas que
retornam valores

ou tabelas.

TI TOTAL para Área Fiscal e Controle

Professor Ramon Souza

55

3. REFERÊNCIAS

TUTORIALSPOINT. PL/SQL Tutorial. Disponível em:
<https://www.tutorialspoint.com/plsql/plsql_overview.htm>. Acesso em: 14 dez. 2020.

W3SCHOOLS. SQL Tutorial. Disponível em: <https://www.w3schools.com/sql/>.
Acesso em: 14 dez. 2020.

