
23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 1/10

 01
Integrando com o Via Cep

Transcrição

Mais uma das peculiaridades que temos nos documentos brasileiros é o trabalho com o CEP no Java. Tratando esse CEP,

podemos trabalhar em uma base de dados ou passar para o front-end. No segundo caso, quando preenchemos um

formulário com CEP, os campos de estado, cidade, bairro e endereço são preenchidos automaticamente.

Se mudarmos o CEP, ele adequará os outros dados automaticamente.

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 2/10

Quem é do ramo da programação sabe que essa chamada para capturar os dados não é tão automática assim. O site dos

Correios (http://www.correios.com.br/para-voce) disponibiliza uma pesquisa por CEP. Quando preenchemos, com um

CEP, ela nos retorna o endereço correspondente, com bairro e localidade.

http://www.correios.com.br/para-voce

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 3/10

E como pegar os dados daqui, que é um HTML, e passo para um Java? Teríamos que fazer um parse , procurar onde

está o table do logradouro (a <div>logradouro</div>), a do Bairro e assim por diante, picotando o HTML. Seria um

pouco demorado fazer dessa maneira, por isso costumamos usar REST, fazendo a chamada em algum webservice que

nos retorne um .json ou um .xml , que nos trazem dados mais fáceis de tratarmos. Se usarmos o HTML, virão junto

com os dados que nos interessam o cabeçalho, o menu lateral... Temos aqui na Alura um curso

(https://cursos.alura.com.br/course/webservices-rest-com-jaxrs-e-jersey) que ensina a consumir esse tipo de dado via

REST, usando o JAX-RS e o Jersey. Vou explicar aqui o básico do REST, como ele busca um dado e como o servidor nos

retorna.

Estando em uma aplicação, em um celular, desktop ou navegador qualquer, faz-se uma chamada. A chamada é feita

para o servidor em cima do protocolo HTTP, usando os verbos get , post , delete ou update . O servidor nos retorna

só os dados solicitados no formato que especi�camos, por exemplo um .json . O mais interessante é que o dado já vem

tratado, diferente de todo um HTML, tornando muito mais fácil usá-lo no Java.

Tendo em mente que queremos o dado via .json , não podemos usar o site dos Correios, que só disponibiliza o HTML.

Usaremos o ViaCEP (http://viacep.com.br/), um webservice gratuito que disponibiliza os CEPs do correio via .json .

A pesquisa do CEP tem o seguinte padrão viacep.com.br/ws/01001000/json/ e deve ser feita na barra do navegador. O

número do CEP consta antes do formato desejado. O resultado vem em texto. Só precisamos fazer um parse do que

QUEREMOS.

https://cursos.alura.com.br/course/webservices-rest-com-jaxrs-e-jersey
http://viacep.com.br/

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 4/10

Caso desejemos os dados no formato .xml , basta alterar o �nal da URL.

Hoje em dia é mais comum trabalhar com .json , e é o que usaremos. Faremos uma chamada, passando a URL, no

Java. Criaremos uma nova classe no nosso pacote (com o botão direito sobre ela New > Class). chamada CEP . Dentro

dela, criaremos o método main para fazer a chamada dentro dele.

package br.com.alura

public class CEP {

 public static void main (String[] args) {
 URL

 }

}

Como a URL está no java.net , optaremos por ele.

A seguir, colocaremos a URL que queremos chamar, criando uma variável e a colocando em forma de string.

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 5/10

package br.com.alura

import java.net.URL;

public class CEP {

 public static void main (String[] args) {
 URL url = new URL("http://viacep.com.br/ws/01001000/xml/");

 }

}

O Eclipse nos avisa que há um problema de exceção e nos sugere duas soluções rápidas.

Optaremos por resolver com um try/catch .

public class CEP {

 public static void main (String[] args) {
 try {
 URL url = new URL("http://viacep.com.br/ws/01001000/xml/");
 } catch (MalformedURLException e){
 e.printStackTrace();

 }

 }

}

Agora é preciso abrir a conexão, com o openConnection() , que nos retorna um HttpURLConnection .

public class CEP {

 public static void main (String[] args) {
 try {
 URL url = new URL("http://viacep.com.br/ws/01001000/xml/");
 HttpURLConnection conexao = url.openConnection();
 } catch (MalformedURLException e){

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 6/10

 e.printStackTrace();

 }

 }

}

Precisaremos fazer um cast , pois a conexao na verdade retorna uma URLConnection . E aqui também há uma exceção,

então precisaremos acrescentar mais um catch .

public class CEP {

 public static void main (String[] args) {
 try {
 URL url = new URL("http://viacep.com.br/ws/01001000/xml/");
 HttpURLConnection conexao = (HttpURLConnection) url.openConnection();
 } catch (MalformedURLException e){
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

}

Então, poderemos con�gurar nossa conexão, usando setRequestMethod() , que recebe uma string. O método que

usaremos é o "GET" .

public class CEP {

 public static void main (String[] args) {
 try {
 URL url = new URL("http://viacep.com.br/ws/01001000/xml/");
 HttpURLConnection conexao = (HttpURLConnection) url.openConnection();
 conexao.setRequestMethod("GET");
 } catch (MalformedURLException e){
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

}

Precisamos pegar os dados do servidor com o getInputStream() , que é mais um trabalho. No começo do curso,

mencionamos que esse é o dia a dia do programador brasileiro. Será que não tem algo mais fácil?

Como muitas pessoas passam por isso, foi criada uma API para facilitar o trabalho, também chamada ViaCEP. Está

disponível no GitHub (https://github.com/gilberto-torrezan/viacep). Vamos baixá-la via <a href=

https://mvnrepository.com/artifact/com.github.gilberto-torrezan/viacep/1.2.0

https://github.com/gilberto-torrezan/viacep
https://mvnrepository.com/artifact/com.github.gilberto-torrezan/viacep/1.2.0

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 7/10

(https://mvnrepository.com/artifact/com.github.gilberto-torrezan/viacep/1.2.0)" target="blank">Maven, na versão mais

atual. Basta copiar o código correspondente da dependência.

Ele será colado no pom.xml , depois da dependência do Moneta.

Assim que o ViaCEP aparecer dentre as dependências do Maven, poderemos substituir todo aquele código que

digitamos. Usaremos ViaCEPClient , pois somos os consumidores de um servidor.

<project xmlns="http://maven.apache.org/POM/4.0.0""xmlns:xsi="http://www.w3.org/2001/XMLSchema-i
 <modelVersion>4.0.0</modelversion>
 <groupId>br.com.alura.brasileirice</groupId>
 <artifactId>Brasileirice</artifactId>
 <version>0.0.1-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>br.com.caelum.stella</groupId>
 <artifactId>caelum-stella-core</artifactId>
 <version>2.1.2</version>
 </dependency>
 <dependency>
 <groupId>org.javamoney</groupId>
 <artifactId>moneta</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>com.github.gilberto-torrezan</groupId>
 <artifactId>viacep</artifactId>
 <version>1.2.0</version>
 </dependency>
 </dependencies>

</project>

https://mvnrepository.com/artifact/com.github.gilberto-torrezan/viacep/1.2.0

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 8/10

 public static void main(String[] args) {
 ViaCEPClient cliente = new ViaCEPClient();
}

Agora usaremos o getEndereco(cep) , para que possamos pegar o endereço com base no CEP.

 public static void main(String[] args) {
 ViaCEPClient cliente = new ViaCEPClient();
 cliente.getEndereco(82010340);
}

O Eclipse novamente nos avisa de um erro. Colocaremos a solicitação dentro de um try/catch . O importante é que ele

retorna um ViaCEPEndereco , que é efetivamente o endereço da chamada, e a partir dele conseguimos pegar o

logradouro, o bairro, e as demais informações.

 public static void main(String[] args) {
 ViaCEPClient cliente = new ViaCEPClient();
 try {
 ViaCEPEndereco endereco = cliente.getEndereco(82010340);
 } catch (IOException E) {
 e.printStackTrace();
 }
}

Quando clicamos em ViaCEPEndereco com o Ctrl pressionado, vemos a classe como um todo.

public class ViaCEPEndereco implements Serializable {

 private static final long serialVersionUID = 1L;

 private String cep;

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 9/10

 private String logradouro;
 private String complemento;
 private String bairro;
 private String localidade;
 private String uf;
 private String ibge;

 public String getCep() {
 return cep;
 }
}

Todos os dados ali listados podem ser trazidos para o método main . Vamos imprimir em nosso código o bairro.

 public static void main(String[] args) {
 ViaCEPClient cliente = new ViaCEPClient();
 try {
 ViaCEPEndereco endereco = cliente.getEndereco(82010340);
 System.out.println(endereco.getBairro());
 } catch (IOException E) {
 e.printStackTrace();
 }
}

Agora basta salvar e rodar para obter a informação desejada. O console nos mostrará o seguinte:

Santo Inácio

Vamos testar também com o logradouro.

 public static void main(String[] args) {
 ViaCEPClient cliente = new ViaCEPClient();
 try {
 ViaCEPEndereco endereco = cliente.getEndereco("82010340");
 System.out.println(endereco.getLogradouro());
 } catch (IOException E) {
 e.printStackTrace();
 }
}

Ao rodar, o console nos mostrará:

Rua Tobias de Macedo Júnior

Todo o procedimento complexo é feito pelo simples getEndereco , facilitando o trabalho para nós. Quando clicamos em

ViaCEPClient com o Ctrl pressionado, vemos que todo o código que estávamos criando está contido na classe.

...
String urlString = getHost() + cep + "/json/";
URL url = new URL(urlString);

23/04/2020 Java Brasil: Aula 5 - Atividade 1 Integrando com o Via Cep | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/java-brasil-lidando-com-datas-numeros-documentos/task/22150 10/10

HttpURLConnection URLConnection = (HttpURLConnection) url.openConnection;
try{
 InputStream in = new BufferedInputStream(URLConnection.getInputStream());
 ViaCEPEndereco obj = getService().benFrom(ViaCEPEndereco.class, in);
 if(obj == null || obj.getCep() == null){
 return null;
 }
 return obj;
}

A API serve justamente para que não tenhamos que criar todo aquele código. Ela cria o chamado para nós, e �ca bem

mais simples consumir a API que implementar tudo. Até a próxima!

