
Módulo 2 - Fundamentos de programação 1

󾠯
Módulo 2 - Fundamentos de programação
Olá, futuro dev!

Neste módulo, vamos mergulhar no fascinante mundo da lógica e ver como ela se aplica à programação. Isso mesmo! Estamos prestes a
começar a escrever nossas primeiras linhas de código. Mas antes, vamos dar um passo atrás e explorar o surgimento da lógica como
ciência e a álgebra booleana. Preparado? Vamos lá!

Lógica: Um pouco de filosofia
Provavelmente, você já ouviu falar de Aristóteles, certo? Ele foi um dos três grandes filósofos da Grécia Antiga, juntamente com Sócrates e
Platão. Uma de suas principais contribuições para o mundo da filosofia e do pensamento ocidental foi a criação da lógica. Para Aristóteles, a
lógica é uma ferramenta que nos permite identificar erros e estabelecer verdades.

Para entender melhor, vamos aprender sobre a noção de silogismo. O silogismo é um tipo de raciocínio em que uma conclusão é deduzida
a partir de uma série de premissas ou suposições específicas.

Por exemplo:

Todas as pessoas gregas são humanas.

Todos os humanos são mortais.

Sendo assim, todos os gregos são mortais.

Para explicar melhor o que é um silogismo, o raciocínio pode ser sintetizado da seguinte maneira:

Se todo X é Y e todo Y é Z, então, todo X é Z.

Agora, você deve estar se perguntando: "O que isso tem a ver com programação?". Bem, a lógica é a base de todos os programas de
computador. Quando programamos, estamos essencialmente escrevendo instruções lógicas para o computador seguir. Cada linha de
código é uma instrução que diz ao computador o que fazer, e essas instruções são baseadas em princípios lógicos.

Agora que temos uma compreensão básica da lógica, vamos introduzir dois conceitos fundamentais na programação: a álgebra booleana e
a tabela verdade.

Álgebra Booleana: A Matemática da Lógica

A álgebra booleana é o sistema matemático que nos permite manipular e resolver expressões lógicas. Ela foi nomeada em homenagem a
George Boole, um matemático britânico que a desenvolveu no século XIX.

Existem três operações básicas na álgebra booleana:

1. AND (E): Esta operação retorna verdadeiro se ambas as suas entradas forem verdadeiras. Caso contrário, retorna falso.

2. OR (OU): Esta operação retorna verdadeiro se pelo menos uma de suas entradas for verdadeira. Caso contrário, retorna falso.

Módulo 2 - Fundamentos de programação 2

3. NOT (NÃO): Esta operação inverte o valor da entrada. Se a entrada for verdadeira, retorna falso. Se a entrada for falsa, retorna
verdadeiro.

💡 Essas operações podem ser combinadas para formar expressões lógicas mais complexas. Por exemplo, a expressão "(A AND
B) OR NOT C" é verdadeira se A e B forem ambos verdadeiros, ou se C for falso.

💻 Na programação, usamos a lógica booleana o tempo todo. Por exemplo, quando verificamos se uma condição é verdadeira ou
falsa para decidir qual ação o programa deve tomar.

Tabela Verdade: Verdadeiro ou Falso?

A tabela verdade é uma ferramenta simples, mas poderosa, que nos ajuda a entender como diferentes declarações lógicas interagem. Em
uma tabela verdade, cada linha representa uma possibilidade diferente. Vamos ver um exemplo simples com duas variáveis booleanas: A e
B.

A B A e B A ou B

V V V V

V F F V

F V F V

F F F F

Nesta tabela, "V" representa verdadeiro e "F" representa falso. A coluna "A e B" mostra o resultado da operação AND (do inglês, significa
“e” em português) entre A e B, enquanto a coluna "A ou B" mostra o resultado da operação OR (do inglês, significa “ou” em português).

Como você pode ver, "A e B" é verdadeiro apenas quando ambos A e B são verdadeiros. Por outro lado, "A ou B" é verdadeiro se pelo
menos um de A ou B for verdadeiro.

Exemplos
Vamos usar exemplos do dia a dia para ilustrar a tabela verdade. Considere as seguintes declarações:

A: "Está chovendo."

B: "Eu tenho um guarda-chuva."

Agora, vamos aplicar a lógica booleana a essas declarações:

A (Está chovendo)
B (Eu tenho um guarda-
chuva)

A AND B (Está
chovendo e eu tenho
um guarda-chuva)

A OR B (Está chovendo
ou eu tenho um guarda-
chuva)

V V V V

V F F V

F V F V

F F F F

Aqui está o que cada linha da tabela significa:

1. Primeira linha (V, V): Está chovendo e eu tenho um guarda-chuva. Como ambas as declarações são verdadeiras, "A AND B" é
verdadeiro (eu estou preparado para a chuva). Da mesma forma, "A OR B" também é verdadeiro.

Módulo 2 - Fundamentos de programação 3

2. Segunda linha (V, F): Está chovendo, mas eu não tenho um guarda-chuva. Neste caso, "A AND B" é falso (eu não estou preparado
para a chuva), mas "A OR B" é verdadeiro (uma das condições é verdadeira).

3. Terceira linha (F, V): Não está chovendo, mas eu tenho um guarda-chuva. Aqui, "A AND B" é falso (não está chovendo, então não
importa se eu tenho um guarda-chuva), mas "A OR B" é verdadeiro (uma das condições é verdadeira).

4. Quarta linha (F, F): Não está chovendo e eu não tenho um guarda-chuva. Como ambas as declarações são falsas, tanto "A AND B"
quanto "A OR B" são falsos.

Espero que esses exemplos ajudem a ilustrar como a lógica booleana funciona na prática!

Primeira linha de código: Python 🐍

A primeira linguagem de programação que vamos explorar é o Python. Considerada uma linguagem de alto nível, ela é notável pela sua
legibilidade e facilidade de aprendizado. As aplicações do Python são vastas, abrangendo desde o desenvolvimento de programas simples,
jogos e sites, até campos avançados como aprendizado de máquina (Machine Learning), inteligência artificial (IA) e análise de dados (Data
Analysis).

Para facilitar a compreensão dos principais elementos da sintaxe do Python, faremos algumas associações com o português. Embora as
linguagens de programação sejam escritas predominantemente em inglês, a estrutura do Python é intuitiva e, com um pouco de prática,
você será capaz de entender e escrever código, mesmo sem um conhecimento profundo de inglês. Vamos começar?

Variáveis

As variáveis são como caixas onde guardamos nossos dados. Elas têm nomes e guardam valores. No Python, podemos criar uma variável
simplesmente atribuindo um valor a ela. Por exemplo:

idade = 25
nome = "João"
altura = 1.75
tem_cachorro = True
mora_sozinho = False

Aqui, idade e nome são variáveis. idade guarda o valor 25 e nome guarda o valor "João" .

Tipos de Dados
Os tipos de dados são como as diferentes formas que nossos dados podem assumir. No Python, temos vários tipos de dados, incluindo:

int (inteiro): idade = 25

float (número de ponto flutuante): altura = 1.75

str (string, ou cadeia de caracteres): nome = "João"

bool (booleano, que pode ser Verdadeiro ou Falso): tem_cachorro = True

Módulo 2 - Fundamentos de programação 4

Assimilando conhecimento

🧵 O tipo str , sendo a abreviação do inglês string (corda, barbante), na programação é uma cadeia de caracteres. Ou seja, é
composta por letras, números e/ou símbolos, que são sempre tratados como texto, independentemente do seu conteúdo.

💯 O tipo int , sendo a abreviação do inglês integer (inteiro), é como um número inteiro. Isso significa que são números que não
possuem casas decimais.

🪂 O tipo float , sendo a abreviação do inglês floating point (ponto flutuante), é como um número flutuante. Isso significa que, ao
contrário dos números inteiros, são números que possuem casas decimais ou “números quebrados”.

📐 O tipo bool corresponde aos valores True (Verdadeiro) ou False (Falso). O nome foi dado em homenagem a Álgebra Booleana
de George Boole.

Operadores
Os operadores são como os verbos da nossa linguagem de programação. Eles realizam ações em nossos dados. No Python, temos vários
tipos de operadores:

Operadores Aritméticos
Os operadores aritméticos são como as operações matemáticas que aprendemos na escola. Eles incluem:

+ (Adição): 5 + 3 é igual a 8 .

- (Subtração): 10 - 7 é igual a 3 .

* (Multiplicação): 4 * 2 é igual a 8 .

/ (Divisão): 9 / 3 é igual a 3 .

% (Módulo): 10 % 3 é igual a 1 , pois é o resto da divisão de 10 por 3.

** (Exponenciação): 2 ** 3 é igual a 8 , pois é 2 elevado à potência de 3.

Operadores de Comparação
Os operadores de comparação são usados para comparar valores. Eles são como perguntas que fazemos ao Python. Eles incluem:

== (Igual a): 5 == 3 retorna False , pois 5 não é igual a 3.

!= (Diferente de): 5 != 3 retorna True , pois 5 é diferente de 3.

> (Maior que): 5 > 3 retorna True , pois 5 é maior que 3.

< (Menor que): 5 < 3 retorna False , pois 5 não é menor que 3.

>= (Maior ou igual a): 5 >= 5 retorna True , pois 5 é maior ou igual a 5.

<= (Menor ou igual a): 5 <= 3 retorna False , pois 5 não é menor ou igual a 3.

Operadores Lógicos
Os operadores lógicos são usados para combinar condições. Eles são como conjunções que usamos para combinar frases. Eles incluem:

and (E): 5 > 3 and 5 > 4 retorna True , pois ambas as condições são verdadeiras.

or (OU): 5 > 3 or 5 < 4 retorna True , pois pelo menos uma das condições é verdadeira.

not (NÃO): not 5 < 3 retorna True , pois 5 não é menor que 3.

Estruturas de Decisão

Módulo 2 - Fundamentos de programação 5

As estruturas de decisão são como encruzilhadas na estrada. Dependendo de uma condição, o programa pode seguir um caminho ou outro.
No Python, usamos if , elif e else para criar essas estruturas.

Primeiro, em português:

idade = 20
SE idade < 18:
 ESCREVA("Menor de idade.")
SE NÃO, SE idade == 18:
 ESCREVA("Acabou de se tornar maior de idade.")
SENÃO:
 ESCREVA("Maior de idade.")

Agora, em Python:

idade = 20
if idade < 18:
 print("Menor de idade.")
elif idade == 18:
 print("Acabou de se tornar maior de idade.")
else:
 print("Maior de idade.")

Nesse exemplo, se a idade for menor que 18 , o programa imprimirá 'Menor de idade'. Se a idade for exatamente 18 , o programa imprimirá
'Acabou de se tornar maior de idade'. Caso contrário, ou seja, se a idade for maior que 18 , o programa imprimirá 'Maior de idade'.”

O exemplo acima irá mostrar “Maior de idade”, pois a idade foi definida como 20 .

✏ O print é uma função nativa da linguagem Python. Isso significa que ela é um recurso da linguagem que já está implementado e
que tem a função de imprimir/mostrar os resultados na tela do computador.

📦 Pensando fora da caixa: O elif é uma facilidade na escrita e funciona como a junção dos termos else + if .

Estruturas de Repetição
As estruturas de repetição são como voltas em uma corrida. Elas permitem que o programa repita um bloco de código várias vezes. No
Python, temos for e while para criar essas estruturas. Por exemplo:

for i in range(5):
 print(i)

Nesse exemplo, o programa imprimirá os números de 0 a 4 . A função range(5) gera uma sequência de números de 0 a 4 , e o for
percorre essa sequência, imprimindo cada número.

Módulo 2 - Fundamentos de programação 6

💡 Normalmente, a contagem é feita começando do número 0 (zero) em diante e não do número 1 (um). Porém é possível que você
defina que a contagem deva começar a partir do número 1, basta escrever como range(1,5) . Isso irá escrever os números 1,2,3,4
ao invés de 0,1,2,3,4 .

Um exemplo de uso do while . Primeiro, em português:

i = 0
ENQUANTO i < 5:
 ESCREVA(i)
 i += 1

Agora, em Python:

i = 0
while i < 5:
 print(i)
 i += 1

Nesse exemplo, o programa também imprimirá os números de 0 a 4 . A diferença é que, em vez de gerar uma sequência de números com
range , estamos iniciando i em 0 e incrementando/acrescentando i em 1 a cada volta do loop. O loop while continuará enquanto a
condição i < 5 for verdadeira.

🔛 O while , do inglês while (em português significa enquanto), é uma estrutura de repetição que permite executar um bloco de
código enquanto uma condição for verdadeira. No exemplo acima, a condição é i < 5 , então o bloco de código será
executado enquanto i for menor que 5 . A cada volta do loop, i é incrementado em 1 com i += 1 , então eventualmente i
será igual a 5 e o loop terminará.

🔁 A palavra loop , em inglês, significa laço ou ciclo. No contexto da programação, um loop é uma estrutura de controle de fluxo que
permite repetir um bloco de código várias vezes. Existem diferentes tipos de loops, como o for e o while , que permitem controlar
o número de repetições ou a condição para a repetição, respectivamente.

Funções
As funções são como pequenas fábricas que pegam alguns inputs, fazem algo com eles e então retornam um output. No Python, definimos
uma função com a palavra-chave def . Por exemplo:

def saudacao(nome):
 return "Olá, " + nome + "!"

Nesse exemplo, saudacao é uma função que recebe um nome como input e retorna uma saudação personalizada. Esse input da função
também é chamado de “parâmetro da função”, onde ela pode receber um ou mais parâmetros.

🧩 As palavras input e output , em inglês, significam entrada e saída, respectivamente. No contexto da programação, input se
refere aos dados ou informações que são fornecidos para um programa, enquanto output se refere aos dados ou informações que
um programa produz.

Por exemplo, se você tem um programa que soma dois números, os números seriam o input e o resultado da soma seria o output.
Em Python, você pode usar a função input() para receber dados do usuário (input) e a função print() para mostrar dados para
o usuário (output).

Bibliografia

Programação em Python 3

Python 3 é a melhor versão já lançada no que diz respeito à linguagem Python. Ela é muito mais poderosa,
conveniente, consistente e expressiva do que jamais foi. Agora, no comando do programador Mark Summerfield, você
poderá aprender como escrever códigos que se beneficiam totalmente das vantagen...

https://www.amazon.com.br/Programação-em-Python-Mark-Summerfield/dp/8576083841/ref=asc_df_8576083841/?t
ag=googleshopp00-20&linkCode=df0&hvadid=379748659420&hvpos=&hvnetw=g&hvrand=12341491743603922798&h

https://www.amazon.com.br/Programa%C3%A7%C3%A3o-em-Python-Mark-Summerfield/dp/8576083841/ref=asc_df_8576083841/?tag=googleshopp00-20&linkCode=df0&hvadid=379748659420&hvpos=&hvnetw=g&hvrand=12341491743603922798&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9101531&hvtargid=pla-812887615857&psc=1

Módulo 2 - Fundamentos de programação 7

vpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9101531&hvtargid=pla-812887615857&psc=1
Tudo o que você precisa saber sobre filosofia: O guia completo da filosofia para você abrir a mente sem sofrer

Compre online Tudo o que você precisa saber sobre filosofia: O guia completo da filosofia para você abrir a mente sem
sofrer, de Kleinman, Paul na Amazon. Frete GRÁTIS em milhares de produtos com o Amazon Prime. Encontre diversos
livros escritos por Kleinman, Paul com ótimos preços.

https://www.amazon.com.br/Tudo-precisa-saber-sobre-filosofia/dp/8573129727

What is a Variable?

I mean it varies. But what else? What is a constant?

https://stevenpcurtis.medium.com/what-is-a-variable-3447ac1331b9

Python Booleans: Use Truth Values in Your Code – Real Python

In this tutorial, you'll learn about the built-in Python Boolean data type, which is used to represent the truth value of an
expression. You'll see how to use Booleans to compare values, check for identity and membership, and control the flow
of your programs with conditionals.

https://realpython.com/python-boolean/

Projeto - Hands on 👋💻

Jogo de Ímpar ou Par
Neste exemplo, vamos criar um jogo simples de ímpar ou par. Dois jogadores irão escolher seus números e decidir se querem ímpar ou par.
O programa então irá somar os números e determinar o vencedor.

Primeiro, vamos pedir os nomes dos jogadores
jogador1 = input("-> Digite o nome do primeiro jogador: ")
jogador2 = input("-> Digite o nome do segundo jogador: ")

Agora, vamos perguntar quem escolhe primeiro
print(f"// Quem escolhe primeiro, {jogador1} ou {jogador2}?")
primeiro_jogador = input(f"-> Digite 1 para escolher o {jogador1} ou 2 para escolher o {jogador2}.")
segundo_jogador = None

if primeiro_jogador == "1":
 primeiro_jogador = jogador1
 segundo_jogador = jogador2
elif primeiro_jogador == "2":
 primeiro_jogador = jogador2
 segundo_jogador = jogador1

O jogador que escolhe primeiro decide se quer ímpar ou par
print("// Digite 0 para escolher PAR ou 1 para escolher ÍMPAR")
escolha = input(f"-> {primeiro_jogador}, você quer ímpar ou par? ")
escolha2 = None

A escolha do segundo jogador é automaticamente definida
if escolha == "ímpar" or escolha == "impar" or escolha == "1":
 escolha = "ímpar"
 escolha2 = "par"
elif escolha == "par" or escolha == "0":
 escolha = "par"
 escolha2 = "ímpar"

print(f"// {segundo_jogador}, você ficou com {escolha2}")

Agora, cada jogador escolhe um número
numero1 = int(input(f"-> {primeiro_jogador}, escolha um número: "))
numero2 = int(input(f"-> {segundo_jogador}, escolha um número: "))

A soma dos números é calculada
soma = numero1 + numero2

https://www.amazon.com.br/Programa%C3%A7%C3%A3o-em-Python-Mark-Summerfield/dp/8576083841/ref=asc_df_8576083841/?tag=googleshopp00-20&linkCode=df0&hvadid=379748659420&hvpos=&hvnetw=g&hvrand=12341491743603922798&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9101531&hvtargid=pla-812887615857&psc=1
https://www.amazon.com.br/Tudo-precisa-saber-sobre-filosofia/dp/8573129727
https://stevenpcurtis.medium.com/what-is-a-variable-3447ac1331b9
https://realpython.com/python-boolean/

Módulo 2 - Fundamentos de programação 8

O vencedor é determinado com base na soma
if soma % 2 == 0:
 vencedor = "par"
else:
 vencedor = "ímpar"

if vencedor == escolha:
 print(f"// {primeiro_jogador} venceu!")
else:
 print(f"// {segundo_jogador} venceu!")

🎲 No código acima, usamos a função input() para receber os nomes dos jogadores e suas escolhas, e a função print() para
mostrar os resultados. A operação % é o operador de módulo, que retorna o resto da divisão de dois números. Se a soma dos
números for divisível por 2 (ou seja, se o resto da divisão por 2 for 0), então a soma é par. Caso contrário, a soma é ímpar.

Explicando a lógica 🧠
A lógica do jogo é simples. Primeiro, pedimos os nomes dos jogadores e quem escolhe primeiro se quer "ímpar" ou "par". A escolha do
segundo jogador é automaticamente definida com base na escolha do primeiro jogador.

Depois, cada jogador escolhe um número. A soma dos números é calculada e, em seguida, verificamos se a soma é par ou ímpar. Se a
soma for par e o primeiro jogador tiver escolhido "par", ele é o vencedor. Se a soma for ímpar e o primeiro jogador tiver escolhido "ímpar",
ele também é o vencedor. Caso contrário, o segundo jogador vence.

Este é um exemplo simples de como você pode usar Python para criar um jogo interativo. Com um pouco de criatividade, você pode
expandir este código para criar jogos mais complexos e interessantes!

Espero que este exemplo tenha sido útil para entender como criar um jogo simples em Python. Lembre-se, a prática é a chave para se
tornar um bom programador. Então, continue praticando e experimentando com diferentes tipos de projetos!

🚩 Bônus: Template Strings, o que são?
Vamos falar sobre as template strings em Python, também conhecidas como f-strings .

As f-strings são uma maneira de formatar strings em Python que permite incorporar expressões dentro de strings de maneira literal. Elas
são chamadas de f-strings porque são prefixadas com a letra 'f'. As f-strings foram introduzidas no Python 3.6.

Aqui está um exemplo simples de uma f-string :

nome = "Maria"
print(f"Olá, {nome}!")

Neste exemplo, a variável nome é incorporada diretamente na string. Quando o programa é executado, ele substitui {nome} pelo valor da
variável nome , resultando na string "Olá, Maria!".

No código do jogo acima, as f-strings são usadas para incorporar os nomes dos jogadores e suas escolhas diretamente nas mensagens
impressas. Por exemplo:

print(f"// Quem escolhe primeiro, {jogador1} ou {jogador2}?")

Nesta linha, {jogador1} e {jogador2} são substituídos pelos nomes dos jogadores. Isso torna o código mais legível e fácil de escrever, pois
você não precisa concatenar strings manualmente.

As f-strings também podem incorporar expressões mais complexas, não apenas variáveis. Por exemplo, você pode fazer algo assim:

numero = 5
print(f"O quadrado de {numero} é {numero ** 2}.")

Neste exemplo, {numero ** 2} é uma expressão que calcula o quadrado do número. Quando o programa é executado, ele substitui a
expressão pelo seu resultado.

As f-strings são uma ferramenta poderosa para formatar strings em Python. Elas são fáceis de usar e tornam o código mais legível e
conciso.

Próximo módulo 🔜
Parabéns por ter chegado até aqui! É por meio de cada linha de código escrita que moldamos o futuro. Programação é para algo divertido e
dinâmico. Então, caso tenha alguma dúvida, aproveite para revisar o módulo e as aulas.

Módulo 2 - Fundamentos de programação 9

No próximo módulo vamos falar sobre “Estrutura de dados e algoritmos”, então daremos mais um passo rumo a aprender novos conceitos e
colocar a mão na massa, programando mais código. Espero que tenha gostado do nosso primeiro projeto “Jogo de Ímpar ou Par”. Até o
próximo módulo!

