
1

GALÁXIA 6

Python Orientado
a Objeto

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

2

Galáxia 6

Mundo 1

1.1 Orientação a objeto - definições

Mundo 2

2.1. Pré-configurações

2.2 Criando uma class

2.2.1. Sintaxe da class

2.2.2. Método __init__:

2.2.3. Parâmetro self:

2.3. __name__ == “__main__”

Mundo 3

3.1. Criação de um método de instância.

Mundo 4

4.1. Criação de um método de classe.

Mundo 5

5.1. Criação de um métodos estáticos

Mundo 6

6.1. Criação de um getter

6.2. Criação de um setter

Mundo 7

7.1. Variáveis públicas

7.2. Variáveis protegidas

7.3. Variáveis privadas

Mundo 8

8.1. Criando a class banco_de_dados

8.2. Utilizando a class banco_de_dados

Mundo 9

9.1. Agregação

9.2. Aplicação agregação

9.2.1. class Carteira_investimento

9.2.2. class Acoes

9.3. Exemplo

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

3

Mundo 10

10.1. Composição

10.2. Aplicação composição

10.2.1. class Empresa

10.2.2. class Endereco

10.3. Exemplo

Mundo 11

11.1. Herança

11.2. Aplicação composição

11.2.1. class Empresa

11.2.2. class Empresa

11.3. Exemplo

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

4

Olá, seja bem vindo à Galáxia 6! Neste módulo iremos abordar tudo

o que você precisa saber sobre orientação a objeto. O que é, seus

principais usos, como você pode utilizar e o que são paradigmas da

programação. Diferente dos módulos anteriores, este não é sobre

bibliotecas de códigos aberto. Este módulo vai te ensinar como pro-

gramar igual profissional, te ensinar alguns conceitos que NINGUÉM

aborda na internet ou em qualquer outro curso. Então vamos adiante

que temos muita coisa pela frente

	 Antes de a gente abordar a orientação a objeto, precisamos enten-

der alguns conceitos e um desses conceitos é o paradigma da progra-

mação.

Os paradigmas da programação são diferentes formas de estruturar

seus programas. Existem 3 principais paradigmas:

1.	 Orientação a objeto - Que se preocupa com a criação e manipulação

de objetos

2.	 Programação funcional - Que se preocupa com a aplicação de fun-

ções matemáticas para os dados.

3.	 Programação imperativa - Que se preocupa em como a aplicação

deve ser construída.

Introdução Mundo 1

1.1. Orientação a objeto - definições

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

5

Por mais que eles sejam diferentes, todos têm suas próprias ações

e características, ou seja, atributos e métodos. Podendo ser iguais ou

diferentes.

E por mais que eles pareçam muito iguais, cada carro é único, sendo

diferentes instâncias de uma mesma classe.

A parte boa da orientação a objeto é que além de uma organização

você consegue reaproveitar boa parte do seu código evitando traba-

lho duplicado.

A orientação a objeto é o paradigma mais popular por ter grande fa-

cilidade na hora da manutenção e organização das aplicações.

Na orientação a objeto existem as classes e os objetos. Pense em

uma analogia com carros:

Imagine que você decidiu comprar um carro e, neste carro, existem

as seguintes características: um motor, cor azul, quatro rodas e câmbio

automático.

Além dessas características, o carro também faz ações como: acele-

rar, desacelerar, tocar música, buzinar e acender farol.

Podemos dizer então que: Seu carro novo é um objeto onde suas ca-

racterísticas são seus atributos e suas ações são seus métodos.

Porém, existem diversos carros “parecidos” com este na própria con-

cessionária que você foi. Todos possuem volante, banco, vidros, quatro

rodas, etc.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

6

Neste mundo daremos os primeiros passos em direção à programa-

ção orientada a objeto.

Mundo 2

2.1. Pré-configurações

2.2. Criando uma class

2.2.2. Método __init__:

2.2.1. Sintaxe da class

Neste mundo não utilizaremos o Jupyter Notebook. Isso porque tra-

balhar com orientação a objeto é muito mais fácil e utilizado no VSCo-

de. Então, caso não tenha baixado, volte à Galáxia 1 e faça o passo a

passo para instalação do VSCode.

Vamos ver alguns atributos e formas das class.

As class, assim como estruturas de repetição, possuem suas hierar-

quias através das tabulações. A criação da classe é feita com a seguin-

te sintaxe:

class _nome_escolhido_:

	 Este é um método construtor. Ele vai construir objetos assim que a

classe for iniciada. Vai ser a primeira coisa que a classe fará quando ini-

ciada. Assim como qualquer outra função, sua hierarquia funciona atra-

vés de tabulações. E este método obedece a seguinte sintaxe:

 def __init__():

A classe tem uma funcionalidade, que a princípio pode trazer estranhe-

za. Ao criar qualquer função, você pode fazer com que alguns parâme-

tros sejam definidos antes, e com o método construtor __init__ não seria

diferente.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

7

2.2.3. Parâmetro self: Respostas:

	 Por meio deste parâmetro poderemos acessar os atributos e méto-

dos de uma classe em Python. Ele refere que algum objeto receberá as

propriedades atribuídas da class.

No exemplo abaixo, estamos criando uma class “Empresa” onde terá

dois atributos, nome e ticker, que poderão ser acessados depois. Cha-

maremos essa class, definindo o nome e o ticker.

Exemplo:

>> WEGE

Você pode até estar estranhando o self, mas ele se refere ao objeto

que a class vai criar. No caso acima, a class é usada para criar o “objeto1” e

deste objeto foi retirado o nome e o ticker. Eu sei, eu sei. Pode estar pa-

recendo confuso agora, mas com a prática, as coisas ficarão mais claras.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

8

Se rodarmos este script ele mostrará o ano de fundação da empresa de motor e a cor do carro do

nelson. Pois ele é o principal, o “__main__”:

Exemplo:

O python possui algumas funções que são nativas, criadas para facili-

tar o uso do usuário e essa é uma delas. Quando você roda um arquivo.

py o python informa para váriavel “__name__” que é o arquivo principal

que está sendo utilizado, ou seja o “__main__”. Quando você importa

uma class o python informa que não é o “__main__” e sim uma impor-

tação. Claro que isso tudo acontece debaixo dos panos.

Claro que você não precisa decorar isso tudo agora, essas coisas

acontecem sem ao menos você perceber. O que você precisa saber é:

Quando você importar um programa, tudo que estiver escrito nele

será importado, menos a parte que está dentro da tabulação if __

name__ == “main”:

 if __name__ == “main”:

	

	 { Parte que só será lida pelo arquivo principal }

Então por exemplo:

2.3. __name__ == “__main__”

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

9

Se importarmos esse script, ele não mostrará nada para nossa tela, ao

menos que a gente peça. Isso porque aquela parte que está dentro da

tabulação do if __name__ == “main”: não aparece. Pois como esse não

é arquivo “__main__” faz com que tudo que esteja dentro da tabulação

“fique invisível" na hora da importação.

Repare que nem o ano de fundação da empresa nem a cor do carro

apareceram.

Respostas:

>> 1960
>> Preta

>> Petrobras

Exemplo:

Respostas:

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

10

Neste mundo aprenderemos a criar, modificar e acessar os méto-

dos de instância dentro da programação orientada a objeto.

Exemplo:Mundo 3

3.1. Criação de um método de instância.

No caso abaixo estamos criando um método que vai retirar carac-

teres especiais do cnpj, deixando apenas números. Métodos da ins-

tância são apenas funções que podem ser aplicadas a TODOS os

casos, desde que respeite o contexto.

Por exemplo, independente do CNPJ colocado ele retornaria ape-

nas o CNPJ com números.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

11

Respostas:

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

classes dentro da programação orientada a objeto.

Mundo 4

4.1. Criação de um método de classe.

>> O CNPJ só com números é 84429695000111.

Sua sintaxe respeita a seguinte ordem:

@classmethod

def nome_funcao(self, parâmetro1, parâmetro2 …):

{ FUNÇÃO_FEITA_POR_VOCÊ }

return cls(parâmetro1, parâmetro2, parâmetroNovo ,…)

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

12

No caso abaixo, estamos criando um método que vai calcular o ano

de fundação de acordo com os anos de existência da empresa. Pen-

se no método de classes como se você tivesse botando uma função

dentro de uma função já existente para que o resultado saia da for-

ma que você deseja. Como se você tivesse formatando, o valor final,

do seu jeito.

Exemplo:

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

13

Respostas:

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

estáticos dentro da programação orientada a objeto.

>> 1960.

Mundo 5

5.1. Criação de um métodos estáticos.

Sua sintaxe respeita a seguinte ordem:

@staticmethod

def nome_funcao():

{ FUNÇÃO_FEITA_POR_VOCÊ }

return instancia

No caso abaixo estamos criando, de forma simples, um método que

gera um id aleatório para empresa. O “@staticmethod” não é necessá-

rio, porém é utilizado para melhorar a organização do código. Como pode

ver, ela não está associada a nenhum objeto nem a nada.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

14

Neste mundo aprenderemos a criar getters e setters e a importância

deles.

Exemplo: Mundo 6

6.1. Criação de um getter

Sua sintaxe respeita a seguinte ordem:

@property

def nome_funcao(self):

return self._nome_instancia

O getter serve para pegar a informação que será tratada.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

15

Exemplo:

Sua sintaxe respeita a seguinte ordem:

@nome_funcao.setter

def nome_variavel(self, parâmetro1)

self._nome_instancia = operação

O setter serve para você formatar a instância do jeito que deseja.

No caso abaixo, estamos criando um “getter” para pegar as informa-

ções e definindo um “setter” para formatar a informação para um int.

6.2. Criação de um setter

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

16

Respostas:

Neste mundo aprenderemos sobre variáveis públicas e privadas e sua

importância para o tratamento de erros.

>> 1960 <class 'int'>

Mundo 7

7.1. Variáveis públicas

7.2. Variáveis protegidas

São variáveis que conseguem ser substituídas por qualquer valor e não

possuem nenhuma sinalização de que aquela variável não pode ser mu-

dada.

São variáveis que conseguem ser substituídas por qualquer valor, porém

possuem sinalização de que aquela variável não pode ser mudada, sua si-

nalização é feita por meio de “_” antes do nome da palavra, por exemplo:

_nomeVariavel

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

17

São variáveis que não podem ser substituídas e possuem sinalização

de que aquela variável não pode ser mudada, sua sinalização é feita por

meio de “_ _” antes do nome da palavra, por exemplo:

__nomeVariavel

Por mais que você tente, você não conseguirá mudar o valor dessa va-

riável. Essa utilidade serve tanto para atributo quanto para método.

No exemplo abaixo definimos a variável “site” como sendo privada. Re-

pare que mesmo que a gente tente mudar o valor dela, isso não acon-

tece. Uma vez que a variável privada foi definida, ela se torna imutável.

Exemplo:7.3. Variáveis privadas

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

18

Respostas:

Abrirá uma contagem de um download e ao final terá sido baixado

um arquivo “itr_cia_202X.zip”
Neste mundo aprenderemos a criar uma class de conexão de banco

de dados que servirá para múltiplas aplicações.

>> 100% [..
........................] 30324054 / 30324054

Mundo 8

8.1. Criando a class banco_de_dados

No exemplo abaixo, estamos criando uma class fictícia de uma cone-

xão de banco de dados.

Lembrando que: Ela não funcionará. Para que haja a conexão precisa-

mos importar módulos específicos para isso, os veremos mais à frente

no nosso módulo de banco de dados.

Porém essa estrutura e a lógica por trás se repetirá mais a frente, en-

tão é bom que você entenda e saiba como funciona.

No exemplo abaixo, essa class estabelece uma conexão com banco

de dados. Isso faz com que a gente possa retirar e adicionar informa-

ções. Estabelecer uma conexão é o primeiro passo antes das trocas de

informações.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

19

Após criado a class que fará a conexão com o banco de dados. A gente

importará ela dentro do nosso método construtor “__init__”. Pois quere-

mos que a primeira coisa que a aplicação faça é estabelecer a conexão, e

é exatamente isso que este método faz.

Após estabelecida a conexão inicial, precisaremos de métodos especí-

ficos que retirem ou adicionem informações dentro do banco de dados.

Aprenderemos esses métodos mais para frente no nosso módulo espe-

cífico para isso.

Exemplo: 8.2. Utilizando a class banco_de_dados

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

20

Exemplo: Respostas:

>> Conexão iniciada com sucesso
>> Dados na base!

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

21

Exemplo:

Neste mundo aprenderemos sobre agregação e como utilizar

Mundo 9

9.1. Agregação

9.2. Aplicação agregação

9.2.1. class Carteira_investimento

É quando uma class precisa da outra para existir.

No exemplo abaixo temos uma carteira de investimentos. Por mais

que toda sua estrutura esteja pronta, não há nenhuma informação. Essa

carteira de investimentos sem nenhuma informação, é inútil e sem uti-

lidade, logo ela precisa de uma class que complemente ela e que faça

com que as informações sejam passadas para si mesma.

	

E essa class vai ser de “Acoes” que podem compor a carteira de inves-

timentos, ou seja, a “Carteira_investimentos” não serve de muita coisa

sem a class “Acoes”.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

22

O exemplo abaixo se trata de uma class de ações que define o nome

e o ticker das ações, essa class sozinha não serve de muita coisa, já

que é apenas o nome e o ticker da ação.

Porém, essa class em conjunto com a “Carteira_investimentos”

compõe uma ferramenta do mercado financeiro que pode ser utili-

zada para análise.

Exemplo:

Reparem que no exemplo abaixo, ao invés de estar passando uma

string para o método “inserir_acao”, é um objeto que está sendo pas-

sado e este objeto contém as informações necessárias sobre a ação.

9.2.2. class Acoes 9.3. Exemplo:

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

23

Neste mundo aprenderemos sobre composição e como utilizá-la.

Respostas:

>> WEGE3 Weg
>> PETR4 Petrobras

Mundo 10

10.1. Composição

10.2. class Empresa

É quando uma class é dona de outra. Elas não têm funcionalidades se-

paradas, já que uma precisa da outra para existir. Se a class principal dei-

xar de existir, a subordinada também deixará.

No exemplo abaixo temos uma class que contém as informações de

uma empresa. Essa class recebe outra class, em forma de objeto, que

contém as informações do endereço respectivo da empresa. Podemos

dizer que a class “Empresa” é mãe da “Endereco”, pois esta última é uti-

lizada por ela. Além disso, um endereço precisa estar associado à alguma

coisa, neste caso é a empresa.

	 Ao final da execução do programa, as informações serão deleta-

das,isso porque foi utilizado o método “__del__”.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

24

No exemplo abaixo temos uma class que cria um endereço e ao final

da execução, ela exclui as informações.

Exemplo:

Exemplo: 10.2.2. class Endereco:

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

25

10.3. Exemplo:

Reparem que no exemplo abaixo, o objeto é criado diretamente no

método “adicionando_enderecos”. Depois de criado, ele exclui tanto as

empresas quanto os endereços.

Lembrando que quando a class principal for apagada, a outra também

será. Ou seja, quando a empresa for apagada, o endereço será também.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

26

Neste mundo aprenderemos sobre herança e como utilizá-la.

Respostas:

>> SC Jaraguá do Sul Brasil
>> Missouri Washington EUA
>> --------------------
>> Weg foi apagado
>> Washington foi apagado
>> Jaraguá do Sul foi apagado

Mundo 11

11.1. Herança

11.2. Aplicação herança

11.2.1. class Pessoa

Talvez seja a principal característica quando se trata de orientação a

objeto. É quando uma class faz parte de outra e herda todas as carac-

terísticas dela.

No exemplo abaixo temos uma class que contém características de

uma pessoa. Essa classe cria um objeto com essas características.

		

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

27

Exemplo:Exemplo:

11.2.2. class Investidor

No exemplo abaixo temos uma class que atribui as características do

objeto criado “Pessoa” por meio da herança. Afinal, todo investidor é

uma pessoa.

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

28

Respostas:11.3. Exemplo:

Reparem como no exemplo abaixo, o objeto “Investidor” está atri-

buindo características do objeto “Pessoa”, por meio da herança.
>> Brenno está comprando ações

Conteúdo licenciado para Bernardo Guedes - 136.471.497-30

