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Introducao

Ol3, seja bem vindo a Galaxia 6! Neste modulo iremos abordar tudo
O que VOCEé precisa saber sobre orientacao a objeto. O que &, seus
principais usos, como vocé pode utilizar e o que sao paradigmas da
programacao. Diferente dos moédulos anteriores, este nao é sobre
bibliotecas de cddigos aberto. Este modulo vai te ensinar como pro-
gramar igual profissional, te ensinar alguns conceitos que NINGUEM
aborda na internet ou em qualquer outro curso. Entao vamos adiante

que temos muita coisa pela frente
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Mundo 1
11. Orientacao a objeto - definicoes

Antes de a gente abordar a orientagao a objeto, precisamos enten-
der alguns conceitos e um desses conceitos € o paradigma da progra-

macgao.

Os paradigmas da programacao sao diferentes formas de estruturar

seus programas. Existem 3 principais paradigmas:

1. Orientagao a objeto - Que se preocupa com a criacdao e manipulagao

de objetos

2. Programacao funcional - Que se preocupa com a aplicacao de fun-

¢coes matematicas para os dados.

3. Programacao imperativa - Que se preocupa em como a aplicagao

deve ser construida.



Py

A orientacao a objeto € o paradigma mais popular por ter grande fa-

cilidade na hora da manutenc¢ao e organizacao das aplicagoes.

Na orientagao a objeto existem as classes e os objetos. Pense em

uma analogia com carros:

Imagine que vocé decidiu comprar um carro €, neste carro, existem
as seqguintes caracteristicas: um motor, cor azul, quatro rodas e cambio

automatico.

Além dessas caracteristicas, o carro também faz acdes como: acele-

rar, desacelerar, tocar musica, buzinar e acender farol.

Podemos dizer entao que: Seu carro novo € um objeto onde suas ca-

racteristicas sao seus 2 iributos e suas agdes sao seus metodos.
Porém, existem diversos carros “parecidos” com este na propria con-

cessionaria que vocé foi. Todos possuem volante, banco, vidros, quatro

rodas, etc.
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Por mais que eles sejam diferentes, todos tém suas proprias acdes
e caracteristicas, ou seja, atributos e métodos. Podendo ser iguais ou

diferentes.

E por mais que eles parecam muito iguais, cada carro € unico, sendo

diferentes instancias de uma mesma classe.

A parte boa da orientacao a objeto € que além de uma organizagao

VOCé consegue reaproveitar boa parte do seu codigo evitando traba-

lho duplicado.




Mundo 2 2.21. Sintaxe da

As class, assim como estruturas de repeticao, possuem suas hierar-

Neste mundo daremos 0s primeiros passos em dire¢cao a programa- , ] . o o ,
quias através das tabulacdes. A criacdo da classe é feita com a seguin-

¢cdo orientada a objeto. ,
te sintaxe:

2.1. Pré-configuracoes

Neste mundo nao utilizaremos o Jupyter Notebook. Isso porque tra- )

. 3 S o 3 2.2.2. Metodo __init__:
balhar com orientacao a objeto é muito mais facil e utilizado no VSCo-
de. Entdo, caso nao tenha baixado, volte a Galaxia 1 e faca o passo a ] ) . o .

Este € um metodo construtor. Ele vai construir objetos assim que a
passo para instalacao do VSCode. o . o _ ] .
classe for iniciada. Vai ser a primeira coisa que a classe fara quando ini-

ciada. Assim como qualquer outra fun¢ao, sua hierarquia funciona atra-

2.2. Criando uma
vés de tabulacdes. E este método obedece a seguinte sintaxe:

Vamos ver alguns atributos e formas das

def _init__():

A classe tem uma funcionalidade, que a principio pode trazer estranhe-
za. Ao criar qualquer funcao, vocé pode fazer com que alguns parame-
tros sejam definidos antes, e com o método construtor __init__ ndo seria

diferente.
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2.2.3. Parametro self:

Por meio deste parametro poderemos acessar os atributos e méto-
dos de uma classe em Python. Ele refere que algum objeto recebera as

propriedades atribuidas da

No exemplo abaixo, estamos criando uma "Empresa” onde tera
dois atributos, nome e ticker, que poderao ser acessados depois. Cha-

Maremos essa . definindo o nome e o ticker.

Exemplo:

lass Empresa:
det  init (self, nome, ticker):

self.nome = nome
self.ticker = ticker

objetol = Empresa(nome="WEGE", ticker="WEGE3")

print{objetol.nome)
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Respostas:

Vocé pode até estar estranhando o self, mas ele se refere ao objeto
que a vai criar. No caso acima, a é usada para criar o “objetol” e
deste objeto foi retirado o nome e o ticker. Eu sei, eu sei. Pode estar pa-

recendo confuso agora, mas com a pratica, as coisas ficarao mais claras.



—— 66 . , ~
2.3. _nhame__== 7 Se rodarmos este script ele mostrara o ano de fundacao da empresa de motor e a cor do carro do

n

nelson. Pois ele é o principal, 0 “__main__":
O python possui algumas funcdes que sao nativas, criadas para facili-

tar o uso do usuario e essa € uma delas. Quando vocé roda um arquivo.

Exemplo:

py o python informa para variavel “__name__" que € o arquivo principal
que esta sendo utilizado, ou sejao ”“ “. Quando vocé importa
uma o python informa quendaoéo” " e sim uma impor-

tacao. Claro que isso tudo acontece debaixo dos panos.

Claro que vocé nao precisa decorar isso tudo agora, essas coisas

acontecem sem ao menos vocé perceber. O que vocé precisa saber é:

Quando vocé importar um programa, tudo que estiver escrito nele
sera importado, menos a parte que esta dentro da tabulagao if __
name__ ==

if _ _name__ == "main”;

§ Parte que sé sera lida pelo arquivo principal }

Entao por exemplo:
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Respostas: Exemplo:

>> 1960

>> Preta

import Empresa

petro = Empresa{nome = "Petrobras”,

Se importarmos esse script, ele nao mostrara nada para nossa tela, ao print(petro.nome)

menos que a gente peca. Isso porque aquela parte que esta dentro da
tabulacdao doif __name__ == . N30 aparece. Pois como esse nao
é arquivo “__main__" faz com que tudo que esteja dentro da tabulacao Respostas:
“fique invisivel" na hora da importacao.

>> Petrobras

Repare que nem o ano de fundacao da empresa nem a cor do carro

apareceram.
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Mundo 3 Exemplo:

Neste mundo aprenderemos a criar, modificar e acessar os méto-

dos de instancia dentro da programacgao orientada a objeto.

3.1. Criacao de um método de instancia.

No caso abaixo estamos criando um método que vai retirar carac-
teres especiais do cnpj, deixando apenas numeros. Métodos da ins-
tancia sdo apenas fungdes que podem ser aplicadas a TODOS os

casos, desde que respeite o contexto.

Por exemplo, independente do CNPJ colocado ele retornaria ape-

nas o CNPJ com numeros.
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Respostas: Mundo 4

>> O CNPJ s6 com numeros & 84429695000111.

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

classes dentro da programacado orientada a objeto.

4 1. Criacao de um método de classe.

Sua sintaxe respeita a seguinte ordem:

( self, , e )

{ FUNCAO_FEITA_POR_VOCE}

cls( , , )
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No caso abaixo, estamos criando um método que vai calcular o ano Exemplo:
de fundacao de acordo com os anos de existéncia da empresa. Pen-
se no método de classes como se vocé tivesse botando uma funcao
dentro de uma funcao ja existente para que o resultado saia da for-
ma que vocé deseja. Como se vocé tivesse formatando, o valor final,

do seu jeito.
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Respostas:

>> 1960.
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Mundo 5

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

estaticos dentro da programacgao orientada a objeto.

5.1. Criacao de um métodos estaticos.

Sua sintaxe respeita a seguinte ordem:

nome_funcao():

{ FUNCAO_FEITA_POR_VOCE}

instancia

No caso abaixo estamos criando, de forma simples, um método que
gera um id aleatério para empresa. O “ " N30 é necessa-
rio, porém é utilizado para melhorar a organizacdao do cédigo. Como pode

ver, ela nao esta associada a nenhum objeto nem a nada.



Exemplo: Mundo 6

Neste mundo aprenderemos a criar getters e setters e a importancia

deles.

6.1. Criacao de um getter

Sua sintaxe respeita a seguinte ordem:

(self):

self._nome_instancia

O getter serve para pegar a informagao que sera tratada.
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6.2. Criacao de um setter Exemplo:

Sua sintaxe respeita a seguinte ordem:

@ .setter
( self, )

self._nome_instancia = operac¢ao

O setter serve para vocé formatar a instancia do jeito que deseja.

No caso abaixo, estamos criando um “getter” para pegar as informa-

coes e definindo um “setter” para formatar a informacgao para um int.
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Respostas:
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>> 1960 <class

'int'>

Mundo 7

Neste mundo aprenderemos sobre variaveis publicas e privadas e sua

importancia para o tratamento de erros.

7.1. Variaveis publicas

S3ao variaveis que conseguem ser substituidas por qualquer valor e nao
possuem nenhuma sinalizacao de que aquela variavel nao pode ser mu-

dada.

7.2. Variaveis protegidas

Sao variaveis que conseguem ser substituidas por qualquer valor, porém

possuem sinalizacao de que aquela variavel nao pode ser mudada, sua si-

" 1/

nalizacao é feita por meio de “_" antes do nome da palavra, por exemplo:

_nomeVariavel



7.3. Variaveis privadas Exemplo:

Sao variaveis que nao podem ser substituidas e possuem sinalizacao
de que aquela variavel ndo pode ser mudada, sua sinalizagao é feita por

meio de “_ _" antes do nome da palavra, por exemplo:

__nomeVariavel

Por mais que voce tente, vocé nao conseguira mudar o valor dessa va-

riavel. Essa utilidade serve tanto para atributo quanto para método.

No exemplo abaixo definimos a variavel “site” como sendo privada. Re-
pare que mesmo que a gente tente mudar o valor dela, isso nao acon-

tece. Uma vez que a variavel privada foi definida, ela se torna imutavel.
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Respostas:

Abrira uma contagem de um download e ao final tera sido baixado

um arquivo “itr_cia_202X.zip"

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 8

Neste mundo aprenderemos a criar uma de conexao de banco

de dados que servira para multiplas aplicagoes.

8.1. Criando a banco_de_dados

No exemplo abaixo, estamos criando uma ficticia de uma cone-

Xao de banco de dados.

Lembrando que: Ela ndo funcionara. Para que haja a conexao precisa-
mos importar modulos especificos para isso, 0os veremos mais a frente

No Nosso mModulo de banco de dados.

Porém essa estrutura e a logica por tras se repetira mais a frente, en-

tao € bom que vocé entenda e saiba como funciona.

No exemplo abaixo, essa estabelece uma conexao com banco
de dados. Isso faz com que a gente possa retirar e adicionar informa-
coes. Estabelecer uma conexao € o primeiro passo antes das trocas de

informacoes.



Exemplo:
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__init_ (self, senha, user):

nha

e
(=

5
5

self.user = user
iniciar conexao(self):

self.conexao = self.user + self.senha

print( 'Conexao

8.2. Utilizando a banco_de_dados

ApOs criado a que fara a conexao com o banco de dados. A gente
importara ela dentro do nosso método construtor “__init__". Pois quere-
MOS que a primeira coisa que a aplicacao faca € estabelecer a conexao, e

é exatamente isso que este método faz.

ApOs estabelecida a conexao inicial, precisaremos de métodos especi-
ficos que retirem ou adicionem informagdes dentro do banco de dados.
Aprenderemos esses métodos mais para frente no nosso moédulo espe-

cifico para isso.



Exemplo: Respostas:

>> Conexao iniciada com sucesso

>> Dados na base!
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Mundo 9 Exemplo:

Neste mundo aprenderemos sobre agregacao e como utilizar Carteira_investimento:

__init (self, nome pessoa):

9'1' Ag regac,:ao self_proprietario = nome_pessoa
self.carteira = []
E quando uma precisa da outra para existir. inserir_acao(self, acao):

self.carteira.append({acao)

9.2. Aplicacao agregacao

listar acoes(self):

for acao in self.carteira:

O.2.1.

print(acao.ticker, acao.nome_empresa)

No exemplo abaixo temos uma carteira de investimentos. Por mais

que toda sua estrutura esteja pronta, ndo ha nenhuma informacgao. Essa
carteira de investimentos sem nenhuma informacao, € inutil e sem uti-
lidade, logo ela precisa de uma que complemente ela e que facga

com que as informacdes sejam passadas para si mesma.

E essa vaiserde” " que podem compor a carteira de inves-
timentos, ou seja, a * " ndo serve de muita coisa
sem a "’ '
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o.2.2. 9.3. Exemplo:

O exemplo abaixo se tratade uma de acdes que defineonome Reparem que no exemplo abaixo, ao inves de estar passando uma
e o ticker das agdes, essa sozinha nao serve de muita coisa, ja string para o método ”“ “, éum que esta sendo pas-
que € apenas o nome e o ticker da acao. sado e este contém as informacgdes necessarias sobre a agao.

74 n

Porem, essa em conjunto com a _

= Carteira_investimento:

compde uma ferramenta do mercado financeiro que pode ser utili-

A
/

Zada para anélise. def init (self, nome pessoa):
\ 3 v

‘ ’ celf.proprietario = nome pessoa

self.carteira = []
Exemplo:
f inserir_ acao(self, acao):
self.carteira.append(acao)
f listar_acoes(self):
def  init_ (self, ticker, nome_empresa):

for acao in self.carteira:

print(acao.ticker, acao.nome_empresa)

self.ticker = ticker
self.nome_empresa = nome_empresa

def init (self, ticker, nome empresa):

self.ticker = ticker
self.nome_empresa = nome_empresa
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if __name__ == '

carteira brenno = Carteira_investimento("Brenno™)

carteira brenno.inserir acao(weg)
carteira brenno.inserir acao(petro)

carteira_brenno.listar acoes()

Respostas:

>> WEGE3 Weg

>> PETR4 Petrobras
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Mundo 10

Neste mundo aprenderemos sobre composicao e como utiliza-la.
10.1. Composicao

E quando uma é dona de outra. Elas ndo tém funcionalidades se-
paradas, ja que uma precisa da outra para existir. Se a principal dei-

xar de existir, a subordinada também deixara.

10.2.
No exemplo abaixo temos uma que contém as informacdes de
uma empresa. Essa recebe outra , em forma de , que

contém as informacdes do endereco respectivo da empresa. Podemos

'

dizer que a "émaeda” ", pois esta ultima é uti-
lizada por ela. Além disso, um endereco precisa estar associado a alguma

Coisa, neste caso € a empresa.

Ao final da execucao do programa, as informacgdes serao deleta-

n

das,isso porque foi utilizado o método “__del__



10.2.2. :

Exemplo:

No exemplo abaixo temos uma que cria um endereco e ao final

da execucao, ela exclui as informacgoes.

Exemplo:

Endereco:

__init (self, estado, cidade, pais):

self.estado estado
cself.cidade cidade
self.pais = pais

_del (self):

print(+"{self.cidade} foi
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10.3. Exemplo:

Reparem que no exemplo abaixo, o objeto é criado diretamente no
método ". Depois de criado, ele exclui tanto as

empresas quanto os enderegos.

Lembrando que quando a principal for apagada, a outra também

sera. Ou seja, quando a empresa for apagada, o endereco sera também.
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Respostas:

>> SC Jaragud do Sul Brasil
>> Missouri Washington EUA

>> Weg foi apagado
>> Washington foi apagado
>> Jaragud do Sul foi apagado
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Mundo 11

Neste mundo aprenderemos sobre heranca e como utiliza-la.

11.1. Heranca

Talvez seja a principal caracteristica quando se trata de orientacao a

objeto. E quando uma faz parte de outra e herda todas as carac-

teristicas dela.

11.2. Aplicacao heranca

11.21.

No exemplo abaixo temos uma que contém caracteristicas de

uma pessoa. Essa classe cria um objeto com essas caracteristicas.



Exemplo: Exemplo:

Investidor(Pessoa):

__init (self, nome, cidade}:
comprar_acoes(self):

self.nome = nome
self.cidade = cidade
print(f"{self.nome} estad comprando acdes!"™)

falar_sobre_futebol(self):

print{f"{self.nome} esti falando sobre futebol. (Vamos

11.2.2.

No exemplo abaixo temos uma que atribui as caracteristicas do
objeto criado “ " por meio da heranca. Afinal, todo investidor é

uma pessoa.
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11.3. Exemplo: Respostas:

Reparem como no exemplo abaixo, o objeto * " esta atri-

>> Brenno esta comprando agdes
buindo caracteristicas do objeto ” “, por meio da heranga.
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