GALAXIA 6

-

_

Python Orientado
a Objeto

~

J

Py

Galaxia 6 Mundo 6
6.1. Criagao de um getter

Mundo 1 6.2. Criacao de um setter

1.1 Orientacao a objeto - definicoes

Mundo 7
Mundo 2 /.. Variaveis publicas
2.1. Pré-configuracdes /.2. Variaveis protegidas
2.2 Criando uma class /.3. Variaveis privadas
2.2.1. Sintaxe da class

Mundo 8

2.2.2. Método _init__:

8.1. Criando a class banco_de dados
2.2.3. Par@metro self:

8.2. Utilizando a class banco_de dados

" n

2.3. _name__=="_ main__

Mundo 9

Mundo 3 9.1. Agregacao

3.1. Criacao de um metodo de instancia. . “
9.2. Aplicacao agregacao

O.2.1. class Carteira_investimento
Mundo 4

L . 9.2.2. class Acoes
4.1. Criagao de um método de classe.

9.3. Exemplo
Mundo 5

5.1. Criagao de um métodos estaticos

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Py

Mundo 10
10.1. Composicao

10.2. Aplicacao composicao

10.2.1. class Empresa

10.2.2. class Endereco

10.3. Exemplo

N
Mundo 11 \\\\\\4

11.1. Heranca \ -
1.2. Aplicacao composicao \\\\\\\ ‘ \\'

1.2.1. class Empresa

11.2.2. class Empresa

1.3. Exemplo

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Py

Introducao

Ol3, seja bem vindo a Galaxia 6! Neste modulo iremos abordar tudo
O que VOCEé precisa saber sobre orientacao a objeto. O que &, seus
principais usos, como vocé pode utilizar e o que sao paradigmas da
programacao. Diferente dos moédulos anteriores, este nao é sobre
bibliotecas de cddigos aberto. Este modulo vai te ensinar como pro-
gramar igual profissional, te ensinar alguns conceitos que NINGUEM
aborda na internet ou em qualquer outro curso. Entao vamos adiante

que temos muita coisa pela frente

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 1
11. Orientacao a objeto - definicoes

Antes de a gente abordar a orientagao a objeto, precisamos enten-
der alguns conceitos e um desses conceitos € o paradigma da progra-

macgao.

Os paradigmas da programacao sao diferentes formas de estruturar

seus programas. Existem 3 principais paradigmas:

1. Orientagao a objeto - Que se preocupa com a criacdao e manipulagao

de objetos

2. Programacao funcional - Que se preocupa com a aplicacao de fun-

¢coes matematicas para os dados.

3. Programacao imperativa - Que se preocupa em como a aplicagao

deve ser construida.

Py

A orientacao a objeto € o paradigma mais popular por ter grande fa-

cilidade na hora da manutenc¢ao e organizacao das aplicagoes.

Na orientagao a objeto existem as classes e os objetos. Pense em

uma analogia com carros:

Imagine que vocé decidiu comprar um carro €, neste carro, existem
as seqguintes caracteristicas: um motor, cor azul, quatro rodas e cambio

automatico.

Além dessas caracteristicas, o carro também faz acdes como: acele-

rar, desacelerar, tocar musica, buzinar e acender farol.

Podemos dizer entao que: Seu carro novo € um objeto onde suas ca-

racteristicas sao seus 2 iributos e suas agdes sao seus metodos.
Porém, existem diversos carros “parecidos” com este na propria con-

cessionaria que vocé foi. Todos possuem volante, banco, vidros, quatro

rodas, etc.

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Por mais que eles sejam diferentes, todos tém suas proprias acdes
e caracteristicas, ou seja, atributos e métodos. Podendo ser iguais ou

diferentes.

E por mais que eles parecam muito iguais, cada carro € unico, sendo

diferentes instancias de uma mesma classe.

A parte boa da orientacao a objeto € que além de uma organizagao

VOCé consegue reaproveitar boa parte do seu codigo evitando traba-

lho duplicado.

Mundo 2 2.21. Sintaxe da

As class, assim como estruturas de repeticao, possuem suas hierar-

Neste mundo daremos 0s primeiros passos em dire¢cao a programa- ,] . o o ,
quias através das tabulacdes. A criacdo da classe é feita com a seguin-

¢cdo orientada a objeto. ,
te sintaxe:

2.1. Pré-configuracoes

Neste mundo nao utilizaremos o Jupyter Notebook. Isso porque tra-)

. 3 S o 3 2.2.2. Metodo __init__:
balhar com orientacao a objeto é muito mais facil e utilizado no VSCo-
de. Entdo, caso nao tenha baixado, volte a Galaxia 1 e faca o passo a]) . o .

Este € um metodo construtor. Ele vai construir objetos assim que a
passo para instalacao do VSCode. o . o _] .
classe for iniciada. Vai ser a primeira coisa que a classe fara quando ini-

ciada. Assim como qualquer outra fun¢ao, sua hierarquia funciona atra-

2.2. Criando uma
vés de tabulacdes. E este método obedece a seguinte sintaxe:

Vamos ver alguns atributos e formas das

def _init__():

A classe tem uma funcionalidade, que a principio pode trazer estranhe-
za. Ao criar qualquer funcao, vocé pode fazer com que alguns parame-
tros sejam definidos antes, e com o método construtor __init__ ndo seria

diferente.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

2.2.3. Parametro self:

Por meio deste parametro poderemos acessar os atributos e méto-
dos de uma classe em Python. Ele refere que algum objeto recebera as

propriedades atribuidas da

No exemplo abaixo, estamos criando uma "Empresa” onde tera
dois atributos, nome e ticker, que poderao ser acessados depois. Cha-

Maremos essa . definindo o nome e o ticker.

Exemplo:

lass Empresa:
det init (self, nome, ticker):

self.nome = nome
self.ticker = ticker

objetol = Empresa(nome="WEGE", ticker="WEGE3")

print{objetol.nome)

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas:

Vocé pode até estar estranhando o self, mas ele se refere ao objeto
que a vai criar. No caso acima, a é usada para criar o “objetol” e
deste objeto foi retirado o nome e o ticker. Eu sei, eu sei. Pode estar pa-

recendo confuso agora, mas com a pratica, as coisas ficarao mais claras.

—— 66 . , ~
2.3. _nhame__== 7 Se rodarmos este script ele mostrara o ano de fundacao da empresa de motor e a cor do carro do

n

nelson. Pois ele é o principal, 0 “__main__":
O python possui algumas funcdes que sao nativas, criadas para facili-

tar o uso do usuario e essa € uma delas. Quando vocé roda um arquivo.

Exemplo:

py o python informa para variavel “__name__" que € o arquivo principal
que esta sendo utilizado, ou sejao ”“ “. Quando vocé importa
uma o python informa quendaoéo” " e sim uma impor-

tacao. Claro que isso tudo acontece debaixo dos panos.

Claro que vocé nao precisa decorar isso tudo agora, essas coisas

acontecem sem ao menos vocé perceber. O que vocé precisa saber é:

Quando vocé importar um programa, tudo que estiver escrito nele
sera importado, menos a parte que esta dentro da tabulagao if __
name__ ==

if _ _name__ == "main”;

§ Parte que sé sera lida pelo arquivo principal }

Entao por exemplo:

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas: Exemplo:

>> 1960

>> Preta

import Empresa

petro = Empresa{nome = "Petrobras”,

Se importarmos esse script, ele nao mostrara nada para nossa tela, ao print(petro.nome)

menos que a gente peca. Isso porque aquela parte que esta dentro da
tabulacdao doif __name__ == . N30 aparece. Pois como esse nao
é arquivo “__main__" faz com que tudo que esteja dentro da tabulacao Respostas:
“fique invisivel" na hora da importacao.

>> Petrobras

Repare que nem o ano de fundacao da empresa nem a cor do carro

apareceram.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 3 Exemplo:

Neste mundo aprenderemos a criar, modificar e acessar os méto-

dos de instancia dentro da programacgao orientada a objeto.

3.1. Criacao de um método de instancia.

No caso abaixo estamos criando um método que vai retirar carac-
teres especiais do cnpj, deixando apenas numeros. Métodos da ins-
tancia sdo apenas fungdes que podem ser aplicadas a TODOS os

casos, desde que respeite o contexto.

Por exemplo, independente do CNPJ colocado ele retornaria ape-

nas o CNPJ com numeros.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas: Mundo 4

>> O CNPJ s6 com numeros & 84429695000111.

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

classes dentro da programacado orientada a objeto.

4 1. Criacao de um método de classe.

Sua sintaxe respeita a seguinte ordem:

(self, , e)

{ FUNCAO_FEITA_POR_VOCE}

cls(, ,)

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

No caso abaixo, estamos criando um método que vai calcular o ano Exemplo:
de fundacao de acordo com os anos de existéncia da empresa. Pen-
se no método de classes como se vocé tivesse botando uma funcao
dentro de uma funcao ja existente para que o resultado saia da for-
ma que vocé deseja. Como se vocé tivesse formatando, o valor final,

do seu jeito.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Py

Respostas:

>> 1960.

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 5

Neste mundo aprenderemos a criar, modificar e acessar os métodos de

estaticos dentro da programacgao orientada a objeto.

5.1. Criacao de um métodos estaticos.

Sua sintaxe respeita a seguinte ordem:

nome_funcao():

{ FUNCAO_FEITA_POR_VOCE}

instancia

No caso abaixo estamos criando, de forma simples, um método que
gera um id aleatério para empresa. O “ " N30 é necessa-
rio, porém é utilizado para melhorar a organizacdao do cédigo. Como pode

ver, ela nao esta associada a nenhum objeto nem a nada.

Exemplo: Mundo 6

Neste mundo aprenderemos a criar getters e setters e a importancia

deles.

6.1. Criacao de um getter

Sua sintaxe respeita a seguinte ordem:

(self):

self._nome_instancia

O getter serve para pegar a informagao que sera tratada.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

6.2. Criacao de um setter Exemplo:

Sua sintaxe respeita a seguinte ordem:

@ .setter
(self,)

self._nome_instancia = operac¢ao

O setter serve para vocé formatar a instancia do jeito que deseja.

No caso abaixo, estamos criando um “getter” para pegar as informa-

coes e definindo um “setter” para formatar a informacgao para um int.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas:

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

>> 1960 <class

'int'>

Mundo 7

Neste mundo aprenderemos sobre variaveis publicas e privadas e sua

importancia para o tratamento de erros.

7.1. Variaveis publicas

S3ao variaveis que conseguem ser substituidas por qualquer valor e nao
possuem nenhuma sinalizacao de que aquela variavel nao pode ser mu-

dada.

7.2. Variaveis protegidas

Sao variaveis que conseguem ser substituidas por qualquer valor, porém

possuem sinalizacao de que aquela variavel nao pode ser mudada, sua si-

" 1/

nalizacao é feita por meio de “_" antes do nome da palavra, por exemplo:

_nomeVariavel

7.3. Variaveis privadas Exemplo:

Sao variaveis que nao podem ser substituidas e possuem sinalizacao
de que aquela variavel ndo pode ser mudada, sua sinalizagao é feita por

meio de “_ _" antes do nome da palavra, por exemplo:

__nomeVariavel

Por mais que voce tente, vocé nao conseguira mudar o valor dessa va-

riavel. Essa utilidade serve tanto para atributo quanto para método.

No exemplo abaixo definimos a variavel “site” como sendo privada. Re-
pare que mesmo que a gente tente mudar o valor dela, isso nao acon-

tece. Uma vez que a variavel privada foi definida, ela se torna imutavel.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas:

Abrira uma contagem de um download e ao final tera sido baixado

um arquivo “itr_cia_202X.zip"

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 8

Neste mundo aprenderemos a criar uma de conexao de banco

de dados que servira para multiplas aplicagoes.

8.1. Criando a banco_de_dados

No exemplo abaixo, estamos criando uma ficticia de uma cone-

Xao de banco de dados.

Lembrando que: Ela ndo funcionara. Para que haja a conexao precisa-
mos importar modulos especificos para isso, 0os veremos mais a frente

No Nosso mModulo de banco de dados.

Porém essa estrutura e a logica por tras se repetira mais a frente, en-

tao € bom que vocé entenda e saiba como funciona.

No exemplo abaixo, essa estabelece uma conexao com banco
de dados. Isso faz com que a gente possa retirar e adicionar informa-
coes. Estabelecer uma conexao € o primeiro passo antes das trocas de

informacoes.

Exemplo:

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

__init_ (self, senha, user):

nha

e
(=

5
5

self.user = user
iniciar conexao(self):

self.conexao = self.user + self.senha

print('Conexao

8.2. Utilizando a banco_de_dados

ApOs criado a que fara a conexao com o banco de dados. A gente
importara ela dentro do nosso método construtor “__init__". Pois quere-
MOS que a primeira coisa que a aplicacao faca € estabelecer a conexao, e

é exatamente isso que este método faz.

ApOs estabelecida a conexao inicial, precisaremos de métodos especi-
ficos que retirem ou adicionem informagdes dentro do banco de dados.
Aprenderemos esses métodos mais para frente no nosso moédulo espe-

cifico para isso.

Exemplo: Respostas:

>> Conexao iniciada com sucesso

>> Dados na base!

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 9 Exemplo:

Neste mundo aprenderemos sobre agregacao e como utilizar Carteira_investimento:

__init (self, nome pessoa):

9'1' Ag regac,:ao self_proprietario = nome_pessoa
self.carteira = []
E quando uma precisa da outra para existir. inserir_acao(self, acao):

self.carteira.append({acao)

9.2. Aplicacao agregacao

listar acoes(self):

for acao in self.carteira:

O.2.1.

print(acao.ticker, acao.nome_empresa)

No exemplo abaixo temos uma carteira de investimentos. Por mais

que toda sua estrutura esteja pronta, ndo ha nenhuma informacgao. Essa
carteira de investimentos sem nenhuma informacao, € inutil e sem uti-
lidade, logo ela precisa de uma que complemente ela e que facga

com que as informacdes sejam passadas para si mesma.

E essa vaiserde” " que podem compor a carteira de inves-
timentos, ou seja, a * " ndo serve de muita coisa
sem a "’ '

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

o.2.2. 9.3. Exemplo:

O exemplo abaixo se tratade uma de acdes que defineonome Reparem que no exemplo abaixo, ao inves de estar passando uma
e o ticker das agdes, essa sozinha nao serve de muita coisa, ja string para o método ”“ “, éum que esta sendo pas-
que € apenas o nome e o ticker da acao. sado e este contém as informacgdes necessarias sobre a agao.

74 n

Porem, essa em conjunto com a _

= Carteira_investimento:

compde uma ferramenta do mercado financeiro que pode ser utili-

A
/

Zada para anélise. def init (self, nome pessoa):
\ 3 v

‘ ’ celf.proprietario = nome pessoa

self.carteira = []
Exemplo:
f inserir_ acao(self, acao):
self.carteira.append(acao)
f listar_acoes(self):
def init_ (self, ticker, nome_empresa):

for acao in self.carteira:

print(acao.ticker, acao.nome_empresa)

self.ticker = ticker
self.nome_empresa = nome_empresa

def init (self, ticker, nome empresa):

self.ticker = ticker
self.nome_empresa = nome_empresa

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

if __name__ == '

carteira brenno = Carteira_investimento("Brenno™)

carteira brenno.inserir acao(weg)
carteira brenno.inserir acao(petro)

carteira_brenno.listar acoes()

Respostas:

>> WEGE3 Weg

>> PETR4 Petrobras

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 10

Neste mundo aprenderemos sobre composicao e como utiliza-la.
10.1. Composicao

E quando uma é dona de outra. Elas ndo tém funcionalidades se-
paradas, ja que uma precisa da outra para existir. Se a principal dei-

xar de existir, a subordinada também deixara.

10.2.
No exemplo abaixo temos uma que contém as informacdes de
uma empresa. Essa recebe outra , em forma de , que

contém as informacdes do endereco respectivo da empresa. Podemos

'

dizer que a "émaeda” ", pois esta ultima é uti-
lizada por ela. Além disso, um endereco precisa estar associado a alguma

Coisa, neste caso € a empresa.

Ao final da execucao do programa, as informacgdes serao deleta-

n

das,isso porque foi utilizado o método “__del__

10.2.2. :

Exemplo:

No exemplo abaixo temos uma que cria um endereco e ao final

da execucao, ela exclui as informacgoes.

Exemplo:

Endereco:

__init (self, estado, cidade, pais):

self.estado estado
cself.cidade cidade
self.pais = pais

_del (self):

print(+"{self.cidade} foi

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

10.3. Exemplo:

Reparem que no exemplo abaixo, o objeto é criado diretamente no
método ". Depois de criado, ele exclui tanto as

empresas quanto os enderegos.

Lembrando que quando a principal for apagada, a outra também

sera. Ou seja, quando a empresa for apagada, o endereco sera também.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

Respostas:

>> SC Jaragud do Sul Brasil
>> Missouri Washington EUA

>> Weg foi apagado
>> Washington foi apagado
>> Jaragud do Sul foi apagado

Conteudo licenciado para Bernardo Guedes - 136.471.497-30

Mundo 11

Neste mundo aprenderemos sobre heranca e como utiliza-la.

11.1. Heranca

Talvez seja a principal caracteristica quando se trata de orientacao a

objeto. E quando uma faz parte de outra e herda todas as carac-

teristicas dela.

11.2. Aplicacao heranca

11.21.

No exemplo abaixo temos uma que contém caracteristicas de

uma pessoa. Essa classe cria um objeto com essas caracteristicas.

Exemplo: Exemplo:

Investidor(Pessoa):

__init (self, nome, cidade}:
comprar_acoes(self):

self.nome = nome
self.cidade = cidade
print(f"{self.nome} estad comprando acdes!"™)

falar_sobre_futebol(self):

print{f"{self.nome} esti falando sobre futebol. (Vamos

11.2.2.

No exemplo abaixo temos uma que atribui as caracteristicas do
objeto criado “ " por meio da heranca. Afinal, todo investidor é

uma pessoa.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

11.3. Exemplo: Respostas:

Reparem como no exemplo abaixo, o objeto * " esta atri-

>> Brenno esta comprando agdes
buindo caracteristicas do objeto ” “, por meio da heranga.

Conteldo licenciado para Bernardo Guedes - 136.471.497-30

