
Aprendendo Python: Conceitos Básicos

Asimov Academy

Aprendendo Python: Conceitos Básicos

Conteúdo

01. Como Aprender Python? 6
Dicas para estudar Python . 6

Como se escreve código Python . 6
Preciso mesmo usar o Mu? . 7

02. Conhecendo a IDE Mu 8
Instalação . 8
Criando o primeiro script: Hello World . 8
A função print() . 9
Erros em Python . 9
Resumo . 10

03. Script, console e debugger 11
Scripts . 11
Console . 12
Qual utilizar? . 12

Código em script . 13
Código no console . 13

Depurador (debugger) . 13
Resumo . 14

04. Números em Python: int e float 15
int . 15
float . 15
A função type . 15
Matemática básica com Python . 15
Regras básicas de matemática . 16
Resumo . 16

05. Texto em Python: str 18
Texto e números . 18
Operações com strings . 18
Tamanho de um string . 19
Funções e tipos de dados . 19
Resumo . 20

Asimov Academy 1

Aprendendo Python: Conceitos Básicos

06. Variáveis 21
Regras para nome de variáveis . 21
Cuidado: sobrescrevendo nomes já existentes . 22
Resumo . 23

07. Inserindo e formatando texto 24
A função input() . 24
Inserindo variáveis no texto com f-strings . 24
Quebras de linha . 25
Strings brutos . 25
Resumo . 26

08. Controle de fluxo e operadores 27
Controle de fluxo na vida real . 27
Controle de fluxo em Python: if e else . 27
Sintaxe de controle de fluxo . 28
A palavra-chave elif . 28
Operadores de comparação . 28
Operadores booleanos . 29
Recriando o controle de fluxo da imagem . 30
Resumo . 30

09. Listas e tuplas 32
Listas . 32
Indexação . 32
Modificando listas . 33
Tuplas . 34
Resumo . 34

10. Sequências e slicing 35
Sequências . 35
Sequências verdadeiras e falsas . 35
Slices . 36
O valor de pulo no slice . 38
Resumo . 38

11. Função range e for loops 39
A função range . 39
Função range vs slicing . 39

Asimov Academy 2

Aprendendo Python: Conceitos Básicos

Parâmetros de um range: Start, stop, step . 40
For loops . 40
Repetindo ações múltiplas vezes . 41
Resumo . 41

12. Iterando sobre sequências 42
Formatando sequências . 42
Desempacotamento de sequências . 42
Resumo . 44

13. While Loops, break e continue 45
While loops . 45
Loop infinito . 45
Palavra-chave break . 46
Palavra-chave continue . 46
Uso para while loop: pedir por um input específico . 46
Resumo . 47

14. Dicionários e o operador in 48
Dicionários . 48
Sintaxe de um dicionário . 48
Usando dicionários . 48
Iterando sobre dicionários . 50
O operador in com dicionários . 50
Operador in em sequências . 51
Resumo . 52

15. Métodos 53
O que é um método? . 53

Como usar um método . 53
Como vamos aprender métodos . 54

Métodos de dicionários . 54
dict.clear() . 54
dict.get() . 54
dict.setdefault() . 55
dict.keys(), dict.values(), dict.items() 55
dict.update() . 56
dict.copy() . 56

Asimov Academy 3

Aprendendo Python: Conceitos Básicos

Métodos de números . 57
float.as_integer_ratio() . 57
float.is_integer() . 57

Métodos de strings . 57
str.upper() e str.lower() . 57
str.startswith() e str.endswith() . 58
str.count() . 58
str.find() e str.index() . 58
str.isdigit() e str.isalpha() . 59
str.replace() . 59
str.split() e str.join() . 60

Métodos de tuplas . 60
tuple.count() . 60
tuple.index() . 60

Métodos de listas . 61
list.append() . 61
list.extend() . 62
list.insert() . 62
list.pop() . 63
list.reverse() e list.sort() . 63

Resumo . 64

16. Aula extra – Compreensão de lista 65
A estrutura de uma compreensão de lista . 65
Criando a compreensão de lista . 65
Por que usar compreensão de lista? . 66

17. Funções 67
Criando funções . 67

Sintaxe de criação de funções . 67
Tipo de dado e nomenclatura . 67
Escolhendo nomes . 68
Para quê usar funções? . 68
Parâmetros e argumentos . 69
Parâmetros com valor padrão . 69
Passando argumentos através de palavras-chave . 70
Funções sem parâmetros . 71
O valor None . 71

Asimov Academy 4

Aprendendo Python: Conceitos Básicos

Retornando None . 72
Funções sem retorno . 73
Confusão com console de Python . 73
Resumo . 74

18. Módulos de Python e a biblioteca padrão 75
Importação . 75
A palavra-chave import . 75
Alias . 76
Pra quê módulos? . 76
A biblioteca padrão . 77
Tour por alguns módulos da biblioteca padrão . 77
Utilize a biblioteca padrão! . 78
Resumo . 78

Asimov Academy 5

Aprendendo Python: Conceitos Básicos

01. Como Aprender Python?

Bem-vindos à apostila do curso “Aprendendo Python: Conceitos Básicos” da Asimov Academy! Nesta
apostila, nosso foco é aprender a linguagem de programação Python.

Cada capítulo acompanha uma das aulas do curso e introduz um conceito novo. Dessa forma, iremos
construindo nosso conhecimento de forma incremental. Ao longo da apostila, são abordados diversos
conceitos que qualquer programador de Python utiliza diariamente ao escrever seus códigos.

Dicas para estudar Python

Reforçamos aqui o nosso principal mantra dentro da Asimov:

Pratique!

O consenso entre programadores é que só aprendemos a programar a partir da prática! Portanto,
tente realmente digitar todos os exemplos demonstrados, e resolver os desafios antes de olhar as
respostas. Volte para as aulas anteriores e revisem o conteúdo se necessário. Utilize também a nossa
comunidade caso você esteja com dificuldades.

Dito tudo isso: lembre-se de que parte do processo de aprendizado, especialmente para quem é
autodidata, é conseguir encontrar as respostas das suas perguntas. Os melhores programadores
não são aqueles que decoraram todo o código, mas sim aqueles que conseguem encontrar a resposta
de qualquer dúvida rapidamente, seja através do Google, ChatGPT, ou consultando o material das
aulas.

Como se escreve código Python

Como de fato escrevemos código Python?

Tudo começa com um código-fonte, que é um arquivo com comandos na linguagem Python.

Existem programas muito utilizados para ler e escrever códigos. Estes programas são chamados coleti-
vamente de IDEs (do inglês Integrated Development Environment, ou Ambiente de Desenvolvimento
Integrado).

Uma IDE é um ambiente montado e configurado para nos ajudar a escrever código. As mais famosas
IDEs para Python, atualmente, são VS Code e PyCharm.

Dito isso, a configuração inicial de uma IDE não é exatamente simples. Por isso, vamos utilizar outra
IDE feita especialmente para o ensino de Python, chamada Mu. Dessa forma, conseguiremos focar em
aprender código Python o mais rápido possível!

Asimov Academy 6

Aprendendo Python: Conceitos Básicos

Preciso mesmo usar o Mu?

Caso você já saiba usar VS Code ou PyCharm, ou quer se desafiar e usar estes programas logo de cara,
não tem problema. Os códigos e os exemplos vão funcionar da mesma forma.

A diferença é que IDEs avançadas possuem diversas funcionalidades que, para quem está começando,
pode dificultar o aprendizado. Também existirão algumas diferenças no layout dos botões entre as
IDEs avançadas e o Mu. Mas a opção é inteiramente sua.

Vamos começar então a programar em Python com o Mu!

Asimov Academy 7

Aprendendo Python: Conceitos Básicos

02. Conhecendo a IDE Mu

O programa Mu é uma IDE voltada especificamente para o aprendizado de Python. Ela simplifica
bastante a parte mais complicada de instalação e setup de Python, pois já inclui sua instalação própria
de Python, embutida no programa.

Instalação

Baixe o Mu a partir do site: https://codewith.mu/. Há links para a versão para Windows, Mac e Linux.

Criando o primeiro script: Hello World

Quando estamos aprendendo linguagens de programação, a tradição é escrever o Hello World
como o primeiro script. Este código simplesmente exibe o texto “Hello World!” no output.

Para escrevermos este código no Mu, escreva o conteúdo abaixo dentro da janela principal:

print('Hello World!')

Em seguida, clique em Salvar e salve o código como um arquivo Python (extensão .py) no seu
computador. Nomeie o script de hello_world.py.

Aperte o botão Executar e veja o resultado em tela! No Mu, o código permanece ativo mesmo após
execução, então clique em Parar para finalizar a execução.

Asimov Academy 8

https://codewith.mu/

Aprendendo Python: Conceitos Básicos

A função print()

print() é uma função em Python. Quando executamos (“chamamos”) esta função, um texto é
exibido no output. Para chamarmos qualquer função, precisamos digitar seu nome, e em seguida abrir
e fechar parênteses.

Algumas funções aceitam argumentos. No caso da função print(), ela simplesmente pega todos
os argumentos entregues a ela e os exibe no output.

Valores que não forem “printados” não aparecem no output. Modifique o código para o código abaixo
e execute novamente (o Mu salva as alterações automaticamente ao executar):

print('Hello World!')
"Este é o meu primeiro script"
print("Estou aprendendo Python!")

A segunda linha não aparece no output, porque não usamos a função print()!

Erros em Python

Modifique o código para o código abaixo e rode novamente:

print('Hello World!")

Note que colocamos aspas simples na esquerda, e aspas duplas na direita. Isso causa um erro em
Python. No seu output deve ter algo como:

File [...], line 1

print("Hello World!')
ˆ
SyntaxError: EOL while scanning string literal

Sempre que você encontrar um erro em Python (também conhecido como Exception ou Exceção),
não se assuste! Erros são extremamente comuns em programação. Lembre-se sempre de ler a
mensagem de erro e tentar entender o que ela está tentando lhe dizer, para então modificar o seu
código e solucioná-lo.

Em último caso, copie e cole a mensagem de erro no Google. As chances de alguém já ter encontrado
o mesmo erro que você são muito altas, especialmente quando você está começando a aprender a
programar. Sem brincadeiras: saber ler mensagens de erro e procurar por respostas rapidamente
no Google são algumas das principais habilidades que bons programadores desenvolvem com o
tempo.

Asimov Academy 9

Aprendendo Python: Conceitos Básicos

Resumo

• Escreva código e salve em um script para executá-lo no Mu.

• Use a função print() para exibir algum texto ou valor no console.

• Leia as mensagens de erro e busque por soluções na internet.

Asimov Academy 10

Aprendendo Python: Conceitos Básicos

03. Script, console e debugger

Podemos rodar código em Python de duas formas: estruturando uma série de comandos em um script
de Python, ou escrevendo e executando cada linha de código de forma interativa, através de um
console de Python.

Scripts

Scripts são usados para criar um arquivo contendo código Python. Arquivos Python possuem a extensão
.py. Este arquivo fica salvo dentro de alguma pasta no seu computador, pronto para ser executado.

Programas capazes de editar um script de Python são chamados de editores de texto. O exemplo mais
básico de editor de texto é o bloco de notas do Windows, porém há opções melhores para escrever
código Python. A janela principal do Mu é um editor de texto.

Uma vez criado um script, é preciso executá-lo a partir de um Interpretador de Python. O Mu inclui
um interpretador de Python na sua instalação. Portanto, basta abrir o script no programa e clicar no
botão Executar na barra de ferramentas. O resultado do código aparecerá na seção de output.

Asimov Academy 11

Aprendendo Python: Conceitos Básicos

Console

O console é um ambiente que permite a execução interativa de código. O resultado de cada linha
digitada é exibido imediatamente abaixo do comando, sem que precisemos utilizar a funçãoprint().
Dessa forma, é possível testar seu código e inspecionar valores de forma dinâmica.

De forma geral, nada do que é escrito no console fica salvo no seu computador. Por isso, é importante
salvar as linhas de interesse em algum script, para não perdê-las ao fechar o console. É possível acessar
o histórico de comandos de um console com a tecla de “seta pra cima” do seu teclado, mas esta não
é uma forma segura de armazenar código.

Dentro do Mu, podemos abrir/fechar o console através do botão REPL. Esta sigla vem do inglês
read-evaluate-print loop, ou “loop de leitura-avaliação-exibição”, o que descreve bem o
comportamento de um console.

Qual utilizar?

Programadores experientes são proficientes no uso tanto de scripts quanto do console. Utilize o
console para testar ideias e inspecionar valores. Em seguida, passe o código para um script organizado,
de forma a salvá-lo no seu computador.

Nessa apostila, usaremos a seguinte notação para denotar um código a ser desenvolvido em um
script, ou digitado em um console:

Asimov Academy 12

Aprendendo Python: Conceitos Básicos

Código em script

Scripts serão indicados por diversos comandos um abaixo do outro, formando um script completo.

print('Olá Mundo!')
print('Vou aprender Python!')

Código no console

Exemplos de código que devem ser reproduzidos no console aparecem com os caracteres de pre-
fixo >>> (este é o prompt padrão de um console de Python). O output esperado aparece na linha
diretamente abaixo:

>>> 2 + 3
5

>>> 'Hello' + 'World'
'HelloWorld'

Lembre-se de não incluir o prompt >>> na hora de rodar o comando no seu console!

Depurador (debugger)

Um script de Python executa sempre linha a linha. Se usarmos o depurador do Mu (mais conhecido
pela palavra em inglês debugger), veremos a execução de cada linha. Modifique o código para o código
abaixo e clique em Depurar:

print('Hello World!')
print("Este é o meu primeiro script")
print("Estou aprendendo Python!")

No modo de depuração, a linha em laranja representa a próxima linha a ser executada. Se clicarmos
no botão Avançar (destaque em vermelho na imagem abaixo), a linha em laranja é executada. Se a
linha possuir uma chamada para a função print(), então o texto é exibido na janela de output. O
código segue então para a próxima linha. Este processo se repete até que o código chegue ao fim.

Asimov Academy 13

Aprendendo Python: Conceitos Básicos

O debugger possui esse nome justamente porque permite passarmos pelo código linha a linha. Isso
nos ajuda a encontrar e solucionar erros (bugs) do nosso programa!

O debugger também possui uma janela chamada inspetor, que nos permite acompanhar o valor de
variáveis durante a execução do programa. Vamos falar mais de variáveis mais pra frente!

Resumo

• Código dentro de um script fica salvo no seu computador, podendo ser executado novamente
no futuro.

• O console é usado para testar ideias e trechos de código.

• O debugger é usado para acompanhar a execução do código e detectar erros.

Asimov Academy 14

Aprendendo Python: Conceitos Básicos

04. Números em Python: int e float

Existem dois tipos de dados numéricos em Python: int e float.

int

Um int representa um número inteiro, como 1, 50 e -2.

>>> 1 + 2
3

float

Um float representa um número inteiro, como 1.5, 50.25, ou -2.86.

>>> 1.5 + 3.4
4.9

A função type

A função type retorna o tipo de dado do objeto que é passado para ela.

Podemos conferir o tipo de dado de números dessa forma:

>>> type(1.5)
float

>>> type(1)
int

>>> type(1.0)
float

Note que, ao escrevermos 1.0, representa um float, por mais que matematicamente seu valor seja
“inteiro”.

Matemática básica com Python

Podemos usar tanto ints quanto floats para fazer operações matemáticas:

>>> 2 + 2.5 # Soma
4.5

>>> 5 - 2.5 # Subtração

Asimov Academy 15

Aprendendo Python: Conceitos Básicos

2.5

>>> 5 * 3 # Multiplicação
15

>>> 30 / 3 # Divisão
10.0

>>> 3 ** 2 # Exponenciação (potência)
9

Note que é possível misturar ints e floats sem nenhum problema.

Regras básicas de matemática

A ordem de operação é dada pelas regras básicas de aritmética. Se quisermos priorizar alguma
operação, por exemplo, temos que usar parênteses:

>>> 2 * 4 + 6 # Primeiro multiplicação, depois soma
14

>>> 2 * (4 + 6) # Primeiro soma, depois multiplicação
20

Além disso, as regras básicas da matemática continuam sendo verdadeiras. Por exemplo, é impossível
dividir algum número por zero:

>>> 5 / 0
ZeroDivisionError: division by zero

Neste caso, o Python gerou um erro com a mensagem ZeroDivisionError: division by
zero. O erro está evidente: não é possível dividir números por zero!

Resumo

• Dois tipos de dados numéricos: int (inteiros) e float (números “quebrados”).

• Função type() inspeciona o tipo de dado de um valor qualquer.

• Operações matemáticas com int e float:

Operação Sintaxe

Soma a + b

Subtração a - b

Asimov Academy 16

Aprendendo Python: Conceitos Básicos

Operação Sintaxe

Multiplicação a * b

Divisão a / b

Exponenciação a ** b

Asimov Academy 17

Aprendendo Python: Conceitos Básicos

05. Texto em Python: str

Texto em Python é representado pelo tipo de dado string (comumente abreviado para as letras str).
O nome representa a ideia de um “fio”, “corda” ou sequência de caracteres que representam conjunta-
mente um bloco de texto.

Para criar um string, precisamos usar aspas simples ('abc') ou duplas ("abc"). Não há diferença
entre as formas, mas é preciso lembrar de abrir e fechar o string com o mesmo caractere:

>>> "Olá Mundo!"
'Olá Mundo!'

>>> 'Estou aprendendo Python. Python é uma linguagem de programação.'
'Estou aprendendo Python. Python é uma linguagem de programação.'

Texto e números

Um string sempre representa texto, ainda que contenha apenas números. Sendo assim, é impossível
somar um str e um int, por exemplo:

>>> '50' + 50
TypeError: can only concatenate str (not "int") to str

Para realizarmos a operação acima, é preciso converter o texto em um número, usando a função
int() ou float():

>>> int('50') + 50
100

>>> float('50') + 50
100.0

Da mesma forma, se quisermos converter um valor numérico em texto, podemos usar a função
str():

>>> str(50)
'50'

>>> str(2.5)
'2.5'

Operações com strings

Apesar de representarem texto, strings aceitam alguns operadores. Para concatenar texto (isto é, “colar”
strings diferentes um atrás do outro), usamos o operador de soma (+):

Asimov Academy 18

Aprendendo Python: Conceitos Básicos

>>> "Hello" + " " + "World"
'Hello World'

>>> "50" + "10"
'5010'

Alguns detalhes:

• O Note que foi necessário adicionar um caractere de espaço em branco entre as palavras
"Hello" e "World" para que elas não aparecessem grudadas no texto final. Espaço em
branco também é um caractere como qualquer outro!

• Strings numéricos não são somados, mas sim concatenados (mais uma vez: para fazer a operação
aritmética, é necessário converter os strings para números primeiro).

Strings também aceitam outros operadores, como multiplicação por um inteiro para repetir a
palavra:

>>> "Python" * 4
"PythonPythonPythonPython"

Mas não aceitam todos os operadores. Por exemplo, não é possível fazer uma “subtração” de strings:

>>> 'abc' - 'c'
TypeError: unsupported operand type(s) for -: 'str' and 'str'

É o próprio tipo de dado (str, int, float) que determina quais operadores funcionam ou não para
ele!

Tamanho de um string

A função len() retorna o “tamanho” de um objeto. No caso de um string, o tamanho é representado
pelo número de caracteres (incluindo pontuação e espaços em branco):

>>> len('Python')
6

>>> len('Conferido o tamanho desse string...')
35

Funções e tipos de dados

Algumas funções só funcionam com certos tipos de dados. Por exemplo, para os criadores de Python,
não faz sentido perguntar pelo “tamanho de um número”:

>>> len(3)
TypeError: object of type 'int' has no len()

Asimov Academy 19

Aprendendo Python: Conceitos Básicos

Já outras funções, como print(), funcionam com virtualmente qualquer tipo de dado.

Para sabermos exatamente o que uma função ou objeto aceitam, podemos usar outra função,help(),
para ler sua documentação:

>>> help(print)
print(...)

print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
... etc

Dito isso, na prática é muito mais comum procurarmos pela documentação de Python online (faça
uma busca por “Python print function documentation”, por exemplo), ou em sites contendo exemplos
práticos.

Resumo

• str: texto em Python. Sempre entre aspas simples ou duplas.

• Aceita operações como “soma” de strings (concatenação) ou multiplicação por inteiro (repetição).
Outras operações são proibidas (ex: somar string com número).

• Função len() retorna o tamanho de um objeto (número de caracteres, no caso de str).

• Função help() retorna documentação de um objeto ou tipo de dado.

Asimov Academy 20

Aprendendo Python: Conceitos Básicos

06. Variáveis

Em muitas partes do código, será útil dar nomes para valores, para facilitar o entendimento e desen-
volvimento do nosso próprio código. Por exemplo, se quisermos calcular a área A de um círculo, a
fórmula é:

A = πr2

Onde π é a constante pi, e r é o raio do círculo.

Se nosso círculo possuir raio 5, e aproximando pi com o valor3.14, podemos representar essa fórmula
em Python como:

print(3.14 * 5 ** 2)

Este código funcionará sem problemas. Contudo, não é fácil entender exatamente o que ele faz. Mesmo
para o criador do código, pode ser difícil lembrar o que os números representam depois de alguns dias
sem voltar a este problema.

Podemos melhorar este código com o uso de variáveis. Variáveis são formas de darmos nomes a um
certo valor.

O código abaixo, por exemplo, assinala o valor 4 para dentro da variável x e depois inspeciona a
variável para obter seu valor:

>>> x = 4
>>> x
x

Reescrevendo o exemplo do círculo com variáveis, temos:

pi = 3.14
raio = 5
raio_ao_quadrado = raio ** 2

print(pi * raio_ao_quadrado)

A intenção do código fica muito mais evidente!

Regras para nome de variáveis

Apenas letras, números e underscore:

>>> x = 4 # OK
>>> meu_nome = "Juliano" # OK
>>> meu nome = "Juliano" # Errado, contém espaço!
SyntaxError: invalid syntax

Asimov Academy 21

Aprendendo Python: Conceitos Básicos

Python difere letras maiúsculas, minúsculas e acentos:
>>> a = 5

>>> a # OK
5

>>> A # Variável "A" maiúsculo não foi criada!
NameError: name 'A' is not defined

>>> á # Variável "a" com acento não foi criada!
NameError: name 'á' is not defined

Não pode começar com número:
>>> var1 = 10 # OK
>>> 1var = 10 # Errado, começa com número!
SyntaxError: invalid syntax

Não pode ser uma palavra com significado especial em Python, como if e for:
>>> if = 2 # Errado, palavra especial!
SyntaxError: invalid syntax

Cuidado: sobrescrevendo nomes já existentes

Se uma variável for redefinida, apenas o último valor é mantido em memória:
>>> x = 2
>>> x = 10
>>> x
10

Cuidado: se uma variável sobrescrever uma função do Python, comoprint(), a função está “perdida”
até o final da execução do código:
print("Olá, mundo!")

print = 2

print("Olá, mundo!")
TypeError: 'int' object is not callable

Se isso acontecer, é só rodar o script novamente - as variáveis são sempre zeradas quando o script
reinicia.

Por outro lado, se eu quiser que alguma variável persista entre execuções diferentes, então vou precisar
de algum arquivo no qual escrevê-la. Pode ser um arquivo de texto simples (.txt), um arquivo Excel,
um banco de dados, não importa: precisa ficar registrado em algum lugar! Este curso não se aprofunda
na escrita de arquivos, mas é importante saber que esta é a forma de “salvar” uma variável fora do
código.

Asimov Academy 22

Aprendendo Python: Conceitos Básicos

Resumo

• Definir variáveis com operador = (exemplo: var = 5).

• Regras para nome de variáveis:

1. Apenas letras, números e underscore
2. Não pode começar com números
3. Não pode ser palavra reservada do Python

• Cuidado para não sobrescrever outras variáveis ou funções!

Asimov Academy 23

Aprendendo Python: Conceitos Básicos

07. Inserindo e formatando texto

A função input()

A função input() é usada para pegar valores inseridos pelo usuário.

Ela não precisa de nenhum argumento, mas ainda precisamos abrir e fechar os parênteses para
simbolizar que queremos executá-la:

x = input()
print(x)

Na realidade, a função input() tem um argumento opcional. Ele representa um prompt explicativo,
que fica imediatamente antes da posição onde o usuário insere o texto:

nome = input("Digite seu nome: ")
print(nome)

Note que o valor sempre é retornado como um string. Então se quisermos trabalhar com números, é
preciso converter o tipo de dado:

num = input('Digite um número: ')
resultado = int(num) + 10

print(resultado)

Inserindo variáveis no texto com f-strings

Os f-strings são strings que facilitam a inserção de variáveis no texto.

Um string qualquer pode se tornar um f-string apenas adicionando o caractere f imediatamente antes
do seu começo (à esquerda das aspas). As variáveis são passadas diretamente dentro de chaves { }
no meio do string.

Exemplo comparando uso de f-strings:

Sem f-strings
nome = input('Qual o seu nome? ')
idade = input('Qual a sua idade? ')

n_letras = len(nome)
n_letras_str = str(n_letras)

idade_futuro = int(idade) + 5
idade_futuro_str = str(idade_futuro)

print('Olá, ' + nome + '!')
print('Seu nome tem ' + n_letras_str + ' letras.')
print('Daqui 5 anos, você terá ' + idade_futuro_str + ' anos.')

Asimov Academy 24

Aprendendo Python: Conceitos Básicos

Com f-strings
nome = input('Qual o seu nome? ')
idade = input('Qual a sua idade? ')

print(f'Olá, {nome}!')
print(f'Seu nome tem {len(nome)} letras.')
print(f'Daqui 5 anos, você terá {int(idade) + 5} anos.')

Como visto acima, quando usamos f-strings podemos passar até mesmo números ou outros tipos de
dado dentro das chaves, que a conversão para string é feita automaticamente. É até possível realizar
operações simples, como chamar a função len(), diretamente de um f-string!

Quebras de linha

Uma quebra de linha (também chamada de caractere nova linha em Python) é representado em
Python pelo caractere \n. Ao ser printado, o caractere não é exibido em tela, e no seu lugar surge uma
quebra de linha:

s = 'Primeira linha\nSegunda linha\nTerceira linha'
print(s)

O output do código acima é:

Primeira linha
Segunda linha
Terceira linha

Strings brutos

A sequência \n representa uma sequência de controle, isto é, uma combinação especial de caracteres
com funcionalidade específica dentro de um string.

Se quisermos ignorar todas as sequências de controle de um string, e escrever literalmente os carac-
teres \ e n um seguidos do outro, podemos usar um string bruto. De forma similar a um f-string, um
string bruto é identificado pelo prefixo r (do inglês raw):

s = r'Primeira linha\nSegunda linha\nTerceira linha'
print(s)

Neste caso, o output é:

Primeira linha\nSegunda linha\nTerceira linha

Asimov Academy 25

Aprendendo Python: Conceitos Básicos

Resumo

• Função input("prompt opcional") para pegar valor do usuário (sempre lido como um
str).

• f-strings ajudam a inserir variáveis no texto. Exemplo:

nome = 'Juliano'
print(f'Olá, {nome}!')

• Quebra de linha representado pelo caractere especial "\n". Usar string bruto (com prefixo r)
para ignorar caracteres especiais.

Asimov Academy 26

Aprendendo Python: Conceitos Básicos

08. Controle de fluxo e operadores

Controle de fluxo na vida real

No nosso dia a dia, há diversos momentos em que nos deparamos com uma estrutura de controle de
fluxo:

• Se isso for verdadeiro, então faço aquilo.
• Caso contrário, faço essa outra coisa.

Exemplo: algoritmo para decidir se eu devo comer uma comida:

Essa estrutura pode ser representada através de código Python!

Controle de fluxo em Python: if e else

O Python utiliza as palavras if e else para controle de fluxo, junto de algum tipo de comparador:
idade = int(input('Digite sua idade: '))

if idade < 18:
print('Você é menor de idade')
print('Você não pode dirigir um carro')

else:
print('Você é maior de idade')

O código irá exibir valores diferentes, de acordo com a resposta que o usuário passar no input()!

• O bloco if executa apenas se a condição for verdadeira. Neste exemplo, isso significa ter
menos de 18 anos.

• O bloco else executa apenas se as condições anteriores forem falsas. Neste exemplo, isso
significa ter 18 anos ou mais. Podemos pensar no else como um “caso contrário”: se nada for
verdadeiro, então o código no else é executado.

Asimov Academy 27

Aprendendo Python: Conceitos Básicos

Sintaxe de controle de fluxo

Note que há uma sintaxe específica nestes blocos de if e else:

• Uso de dois pontos (:) depois da comparação if idade < 18.
• O bloco imediatamente abaixo da comparação possui indentação, isto é, espaço em branco à

esquerda. Isto não é meramente uma questão de “estilo” de código. A indentação é essencial
em Python, pois indica onde começa e termina o bloco de código dentro da condicional.

• O tamanho padrão da indentação é de 4 espaços, mas Python aceita outros valores, desde que
seja consistente.

• O bloco termina quando a indentação retorna ao valor original.

A palavra-chave elif

Para testar mais de duas condições, podemos usar elif (que é uma combinação de else e if):

idade = int(input('Digite sua idade: '))

if idade < 18:
print('Você tem menos de 18 anos.')

elif idade == 18:
print('Você tem exatamente 18 anos!')

else:
print('Você tem mais de 18 anos.')

Se o if não passar, o código testa o elif. Se o elif também não passar, então o código testa o
else.

Posso incluir mais de um elif. Na realidade posso incluir quantos elif eu quiser, de acordo com o
que fizer sentido!

Operadores de comparação

São usados nas comparações dos blocos if e elif. Retornam sempre um valor True ou False
(verdadeiro ou falso, respectivamente).

Note que True/False são valores próprios em Python, e pertencem ao um tipo de dado específico
(booleano). São escritos com letra inicial maiúscula.

Já utilizamos dois operadores de comparação até aqui: menor que(<) e igual a(==). Aqui está a lista
completa de comparadores:

• Igual a: ==
• Diferente de: !=

Asimov Academy 28

Aprendendo Python: Conceitos Básicos

• Maior que: >
• Menor que: <
• Maior ou igual a: >=
• Menor ou igual a: <=

E alguns exemplos práticos:

>>> 4 == 4.0 # Igual a
True

>>> 4 != "4" # Diferente de
True

>>> 5 > 10 # Maior que
False

>>> 5 < 10 # Menor que
True

>>> 10 >= 10 # Maior ou igual a
True

>>> 11 <= 10 # Menor ou igual a
False

Operadores booleanos

Usados para combinar 2 valores True/False de formas específicas:

• Operador and: retorna True apenas se ambos os valores forem True
• Operador or: retorna True apenas se pelo menos um dos valores for True
• Operador not: inverte o valor (True vira False, False vira True)

Exemplos:

>>> True and True
True

>>> True and False
False

>>> True or True
True

>>> True or False
True

>>> False or False
False

Asimov Academy 29

Aprendendo Python: Conceitos Básicos

>>> not True
False

>>> not False
True

Recriando o controle de fluxo da imagem

Usando operadores de comparação:

print('--- INÍCIO ---')

resposta1 = input('Estou com fome? (Digite s para sim)')
if resposta1 == 's':

resposta2 = input('Tenho comida em casa? (Digite s para sim)')
if resposta2 != 's':

print('Ir ao mercado')
print('Voltar para casa')

print('Preparar uma refeição')
print('Comer a comida')

print('--- FIM ---')

Usando operadores booleanos:

print('--- INÍCIO ---')

estou_com_fome = input('Estou com fome? (Digite s para sim)') == 's'
tenho_comida = input('Tenho comida em casa? (Digite s para sim)') == 's'

if estou_com_fome and not tenho_comida:
print('Ir ao mercado')
print('Voltar para casa')

if estou_com_fome:
print('Preparar uma refeição')
print('Comer a comida')

print('--- FIM ---')

Resumo

• Estrutura de controle de fluxo:

if condicao_01:
Código que roda quando condição 01 é verdadeira

Asimov Academy 30

Aprendendo Python: Conceitos Básicos

elif condicao_02:
Código que roda quando condição 01 é falsa
e condição 02 é verdadeira

elif condicao_03:
...

else:
Código que roda quando nenhuma condição é verdadeira

• Operadores de comparação

Tipo de comparação Operador

Igual a a == b

Diferente de a != b

Maior que a > b

Maior ou igual a a >= b

Menor que a < b

Menor ou igual a a <= b

• Operadores booleanos

Operador Descrição

a and b True se ambos a e b forem True

a or b True se um valor dentre a ou b for True

not a Inverte o valor de a (True vira False e vice-versa)

Asimov Academy 31

Aprendendo Python: Conceitos Básicos

09. Listas e tuplas

Listas

Listas são um tipo de dado diferente dos que já vimos até aqui. Elas são sequências ordenadas de
elementos, sendo que seus elementos podem ser de qualquer tipo (str, int, float, bool, até
mesmo outras listas).

Listas são definidas com colchetes [] e seus elementos são separados uns dos outros com vírgulas
,.

Exemplos de listas:

minha_lista = [1, 2, 3]

outra_lista = ['hello', 'olá', 'bom dia']

lista_misturada = [0, 1.1, 'PYTHON', True, [1, 2]]

Conseguimos usar listas para representar dados da vida real:

alunos = ['Ana', 'Bruno', 'Carlos']
vendas_por_dia = [50, 30, 35, 48, 70, 45, 50]

Indexação

Podemos utilizar índices entre colchetes para pegar os elementos da lista. Importante: em Python, a
indexação começa sempre de zero!

>>> lista_misturada = [0, 1.1, 'PYTHON', True, [1, 2]]
>>> lista_misturada[0] # Primeiro elemento (índice 0)
0

>>> lista_misturada[1] # Segundo elemento (índice 1)
1.1

>>> lista_misturada[2] # Terceiro elemento (índice 2)
'PYTHON'

Uma consequência da indexação começar em 0 é que o último elemento está no índice
len(lista_misturada)-1:

>>> lista_misturada[len(lista_misturada)-1]
[1, 2]

Para não termos que escrever isso toda vez, Python permite que usemos índices negativos para pegar
elementos de trás pra frente:

Asimov Academy 32

Aprendendo Python: Conceitos Básicos

>>> lista_misturada[-1] # Último elemento
[1, 2]

>>> lista_misturada[-2] # Penúltimo elemento
True

Se um elemento da lista for ele mesmo outra lista, podemos usar índices encadeados:

>>> lista_misturada[-1]
[1, 2]

>>> lista_misturada[-1][0]
1

>>> lista_misturada[-1][1]
2

Elementos fora do alcance do índice geram um IndexError:

>>> lista_misturada[1000]
IndexError: list index out of range

>>> lista_misturada[-1000]
IndexError: list index out of range

Modificando listas

Listas são um tipo especial de dado em Python, porque podem ser modificadas diretamente:

>>> alunos = ['Ana', 'Bruno', 'Carlos']

>>> alunos[0] = 'Marcos'
>>> alunos[1] = 0.0
>>> alunos[2] = ['XXX', 'YYY']

>>> alunos
['Marcos', 0.0, ['XXX', 'YYY']]

Podemos também usar a palavra especial del para remover algum elemento da lista, a partir do seu
índice:

>>> alunos = ['Ana', 'Bruno', 'Carlos']

>>> del alunos[0]

>>> alunos
['Bruno', 'Carlos']

Isso é diferente de todos os dados com que já trabalhamos até agora! Com dados imutáveis, temos
certeza que a variável sempre se refere ao mesmo valor (a não ser que ela seja redefinida). Já com
dados mutáveis como listas, o seu conteúdo pode ser modificado dinamicamente.

Asimov Academy 33

Aprendendo Python: Conceitos Básicos

Mais pra frente, quando falarmos de métodos de listas, vamos voltar a outras formas mais eficazes de
modificá-las.

Tuplas

Tuplas são muito parecidas com listas, mas com as seguintes diferenças:

• São escritas com parênteses () no lugar dos colchetes.
• São imutáveis.

Acompanhe o exemplo:

>>> alunos = ('Ana', 'Bruno', 'Carlos')

>>> alunos[0] = 'Marcos'
TypeError: 'tuple' object does not support item assignment

Você pode se perguntar: qual o sentido de uma estrutura imutável, se temos as listas?

• Um objeto não mutável está “protegido” de programadores inadvertidos que tentam modificar
algum valor crucial no programa.

• Ela indica a quem ler o código que aqueles valores são constantes.
• Pode ser usado pra representar alguma estrutura, como por exemplo uma tupla de 3 elementos:

nome, endereço, CPF.

Em termos práticos, e especialmente nos códigos simples com que iremos trabalhar aqui no curso, as
listas nos bastam. Mas é importante saber que as tuplas existem!

Resumo

• Listas são sequências com elementos de qualquer tipo.

• Acesso, modifico e deleto um elemento da lista com seu índice:

li = [1, 2, 3]

primeiro_elemento = li[0]
li[1] = 100
del li[2]

• Índice negativo = pegar elementos a partir do final da lista.

• Tuplas são como listas, mas não podem ser modificadas (objeto imutável).

Asimov Academy 34

Aprendendo Python: Conceitos Básicos

10. Sequências e slicing

Sequências

Listas e tuplas permitem indexação porque são sequências. Strings também funcionam como sequên-
cias (imutáveis), e possuem as mesmas regras de indexação:

>>> nome = "Juliano"

>>> nome[0]
'J'

>>> nome[-1]
'o'

Sequências em Python podem ser vazias - nesse caso, possuem tamanho zero e qualquer indexação
resultará em erro:

>>> s = "" # String vazio
>>> len(s)
0

>>> s[0]
IndexError: string index out of range

>>> li = [] # Lista vazia
>>> len(li)
0
>>> li[0]
IndexError: list index out of range

>>> tup = () # Tupla vazia
>>> len(tup)
0
>>> tup[0]
IndexError: tuple index out of range

Sequências verdadeiras e falsas

O que significa uma sequência ser “falsa” ou “verdadeira”? Em Python, isso é equivalente a ela estar
vazia ou não. Se ela tiver algum elemento, ela será considerada verdadeira (ainda que os elementos
em si sejam “falsos”).

Podemos checar esse comportamento passando uma sequência à função bool.

>>> bool(str()) # String vazio
False

>>> bool(' ')

Asimov Academy 35

Aprendendo Python: Conceitos Básicos

True

>>> bool('Olá!')
True

>>> bool(list()) # Lista vazia
False

>>> bool([0, 0, 0])
True

>>> bool(tuple()) # Tupla vazia
False

>>> bool((1, 2, 3))
True

Em geral, qualquer tipo de dado pode ser considerado True ou False. As regras dependem do tipo
de dado:

• Strings vazios são False, qualquer outro string é True
• Listas e tuplas vazias são False, qualquer outra lista ou tupla é True
• Número zero (seja um int ou float) são False, qualquer outro número é True

A forma tradicional de testar se uma sequênciaseq está vazia ou não é simplesmente usar a construção
if seq:

seq = []

if seq:
print('Sequência não é vazia')

else:
print('Sequência é vazia')

Note que o código acima funcionaria para qualquer sequência!

Em outras linguagens de programação, que não aceitam a construção acima, precisaríamos checar
se o tamanho da sequência é zero com uma função equivalente a len()). Python permite essa
expressividade concisa!

Slices

Além de índices únicos, podemos passar slices a uma sequência para obter uma “fatia” dos seus
elementos:

>>> pessoas = ['João', 'Paulo', 'Clara', 'Maria']

>>> pessoas[1]

Asimov Academy 36

Aprendendo Python: Conceitos Básicos

'Paulo'

>>> pessoas[1:3]
['Paulo', 'Clara']

>>> pessoas[3:4]
['Maria']

Nestes exemplos, os valores 1:3 e 3:4 são os slices.

Notas sobre os slices:

• Incluem o elemento no primeiro índice.
• Pegam todos os elementos até o elemento no segundo índice, sem incluí-lo.
• Retornam uma nova lista, mesmo se ela possuir apenas 1 elemento.

Esse comportamento pode parecer confuso, mas dessa forma, significa que se formos do índice zero
até o tamanho da sequência, pegamos todos seus elementos:
>>> pessoas[0:4]
['João', 'Paulo', 'Clara', 'Maria']

>>> pessoas[0:len(pessoas)]
['João', 'Paulo', 'Clara', 'Maria']

Na realidade, é tão comum começar de zero e ir até o final, que Python nos permite omitir esse
valores:
>>> pessoas[:2] # Do primeiro até o elemento de índice 2
['João', 'Paulo']

>>> pessoas[:-1] # Excluir o último elemento apenas
['João', 'Paulo', 'Clara']

>>> pessoas[2:] # Do elemento de índice 2 até o final
['Clara', 'Maria']

>>> pessoas[1:] # Excluir o primeiro elemento apenas
['Paulo', 'Clara', 'Maria']

Usamos listas nestes exemplos, mas note que tudo isso funciona para qualquer outra sequência, como
strings:
>>> nome = "Juliano"

>>> nome[1:] # Exclui a primeira letra
'uliano'

>>> nome[:-1] # Exclui a última letra
'Julian'

>>> nome[2:5] # "lia"
'lia'

Asimov Academy 37

Aprendendo Python: Conceitos Básicos

O valor de pulo no slice

Por fim, podemos passar um terceiro valor a um slice, que corresponde ao pulo.

Por padrão, esse valor é 1. Mas se quisermos pegar um elementos a cada dois ou três elementos,
podemos modificá-lo:

>>> numeros = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> numeros[0:len(numeros):2] # Apenas os ímpares
[1, 3, 5, 7, 9]

>>> numeros[::2]
[1, 3, 5, 7, 9]

>>> numeros[1:len(numeros):2] # Apenas os pares
[2, 4, 6, 8]

>>> numeros[1::2]
[2, 4, 6, 8]

O pulo também aceita valores negativos. Neste caso, os valores são percorridos de trás pra frente!

>>> numeros = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> numeros[::-1] # Do final pro começo
[9, 8, 7, 6, 5, 4, 3, 2, 1]

O importante aqui não é decorar todas essas regrinhas de slicing, mas saber que existem toda essa
funcionalidade em qualquer sequência de Python. Assim, na hora em que vocês se depararem com
um problema prático, vocês lembrarão que isso existe, e irão atrás da solução!

Resumo

• Strings também são sequências. Sequência “falsa” = sequência vazia.

• Slicing retorna “fatia” de sequência, com sintaxe[inicio:fim:pulo].

• O slicing inclui elemento no índice inicio e exclui o elemento no índice fim.

• Por padrão, inicio vale 0 e fim é igual ao tamanho da sequência.

• pulo controla de quantos em quantos elementos pegar. O valor padrão é 1.

Asimov Academy 38

Aprendendo Python: Conceitos Básicos

11. Função range e for loops

A função range

A função range() cria uma sequência de números em memória:

>>> range(10)
range(0, 10)

Mas para ver a sequência, é preciso usar a função list() ou tuple(). Isso porque ela não carrega
os números em memória, apenas os deixa preparados para serem percorridos:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> tuple(range(20))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

Na realidade, um range não é uma lista ou tupla, mas um objeto próprio em Python:

>>> type(range(10))
range

Função range vs slicing

Note que o último elemento não apareceu nas sequências acima.

Na realidade, a função range() aceita argumentos análogos ao slicing que fizemos anteriormente:

>>> numeros = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> numeros[1:5]
[1, 2, 3, 4]
>>> list(range(1, 5))
[1, 2, 3, 4]

>>> numeros[0:10:2]
[0, 2, 4, 6, 8]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

>>> numeros[10:0:-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(range(10, 0, -1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

As diferenças são apenas a sintaxe (dois pontos no slicing :, vírgulas no range ,) e o fato de que para
usar o slicing, a lista precisa estar previamente definida.

Asimov Academy 39

Aprendendo Python: Conceitos Básicos

Parâmetros de um range: Start, stop, step

Dependendo do número de argumentos do range, os valores padrão mudam:

• 1 número = stop (começa de zero e pula de 1 em 1)
• 2 números = start, stop (pula de 1 em 1)
• 3 números = start, stop, step

Os exemplos abaixo são equivalentes:
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8 ,9]

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8 ,9]

>>> list(range(0, 10, 1))
[0, 1, 2, 3, 4, 5, 6, 7, 8 ,9]

É muito comum usarmos range para definirmos uma lista grande de valores de uma só vez!
Números de 1 a 1000
>>> list(range(1, 1001)) # Números de 1 a 1000
[1, 2, 3, ..., 999, 1000]

Números pares de 1 a 300
>>> list(range(0, 301, 2))
[0, 2, 4, ..., 298, 300] # etc

For loops

Em muitos momentos em programação, vamos querer repetir uma ação N vezes. Podemos fazer isso
com um for loop.

Para criarmos um for loop, usamos a mesma estrutura que já aprendemos para condicionais, mas
utilizamos a palavra-chave for:
for n in range(10):

print(f'O valor de n é: {n}')

print('O loop acabou')

Esse código exibe a mensagem O valor de n é: 0, O valor de n é: 1, e assim por diante,
até percorrer todos os valores do range()!

Note que a variável n não precisou ser definida antes do loop! Ela é criada automaticamente pelo for
loop, e representa cada elemento da sequência sendo iterada. Posso chamá-la do que quiser.

Sugiro acompanhar a iteração pelo debugger, para ver como a variável n altera seu valor a cada
iteração.

Asimov Academy 40

Aprendendo Python: Conceitos Básicos

Repetindo ações múltiplas vezes

Podemos usar um for loop para repetir ações um certo número de vezes. Neste exemplo, a mensagem
Olá! é exibida 3 vezes:

for n in range(3):
print('Olá!')

print('O loop acabou')

Note que, neste caso específicos, nem utilizamos a variável n. Ela corresponde ao número gerado pelo
range(), mas em alguns casos esse número não é necessário pra nada.

Se a variável não for usada para nada, existe a convenção de nomeá-la como _ :

for _ in range(3):
print('Olá!')

print('O loop acabou')

Resumo

• Função range(inicio, fim, pulo) prepara uma sequência de números. É preciso
entregá-la para uma lista ou percorrê-la com um for loop para pegar seus números.

• For loop pode ser usado com range(n) para repetir uma ação n vezes.

• Sintaxe de um for loop:

for numero in range(n):
Repete a ação n vezes

Final do loop

Asimov Academy 41

Aprendendo Python: Conceitos Básicos

12. Iterando sobre sequências

Vimos como iterar sobre os números de um range usando um for loop. Na realidade, podemos iterar
sobre qualquer sequência de Python!

Ao usar um for loop com uma lista, itero sobre seus valores:

valores = [10, 20, 30]
for valor in valores:

print(f'O valor é: {valor}')

Ao usar um for loop com um string, itero sobre seus caracteres:

nome = "Juliano"
for caractere in nome:

print(f"O caractere é: {caractere}")

Posso até iterar sobre estruturas mais complexas, como listas de tuplas!

clientes = [('Ana', 'xxx', 'xxx@gmail.com'), ('Eduardo', 'yyy', 'yyy@gmail.com')]

for cliente in clientes:
nome = cliente[0]
cpf = cliente[1]
email = cliente[2]
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---')

Este tipo de iteração funciona com qualquer tipo de dado que seja uma sequência.

Lembre-se de dar um nome útil para a variável do for loop!

Formatando sequências

Valores dentro de listas (ou qualquer outra estrutura) podem ser reformatados com espaço em branco,
sem que isso cause um erro no Python. Isso nos ajuda a ler e editar código de forma mais clara:

clientes = [
('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

]

Desempacotamento de sequências

Se sei o tamanho de uma sequência, posso “desempacotá-la” em variáveis em uma única linha.
Tomando como exemplo o código dos clientes:

Asimov Academy 42

Aprendendo Python: Conceitos Básicos

clientes = [
('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

]

for cliente in clientes:
nome, cpf, email = cliente
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---')

Isso é chamado de desempacotamento de sequências, e posso usar com qualquer tipo de sequên-
cia:

>>> x, y = (10, 20)

>>> x
10

>>> y
20

>>> letra1, letra2, letra3 = 'ABC'

>>>letra1
'A'

>>> letra2
'B'

>>> letra3
'C'

O único detalhe é que preciso saber o número de elementos de antemão, pois não podem sobrar/faltar
variáveis:

>>> x, y, z = (10, 20)
ValueError: not enough values to unpack (expected 3, got 2)

Posso até mesmo desempacotar uma sequência na chamada do for loop!

clientes = [
('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

]

for nome, cpf, email in clientes:
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---')

Este também é um exemplo de aplicação de tuplas - como elas são imutáveis, sei que sempre terão 3
elementos dentro delas.

Asimov Academy 43

Aprendendo Python: Conceitos Básicos

Resumo

• Posso usar for loops com qualquer sequência.

• Posso adicionar espaço em branco e novas linhas dentro de listas e tuplas, de modo a formatar
melhor o seu conteúdo.

• Desempacotamento de sequências = desmembrar cada elemento de uma sequência em uma
variável:

x, y, z = (10, 20, 30)

print(x)
print(y)
print(z)

Asimov Academy 44

Aprendendo Python: Conceitos Básicos

13. While Loops, break e continue

While loops

Um while loop é utilizado para repetir uma ação até que uma condição deixe de ser verdadeira. Sua
sintaxe é muito parecida com um for loop, mas precisamos de uma condição de parada que impeça
nosso código de executar infinitamente!

Exemplo:

n = 0

while n < 3:
print(f'O valor de n é: {n}')
n = n + 1

print('O loop acabou')

Neste código, a linha n = n + 1 serve de condição de parada. Como o valor de n está sempre sendo
incrementado, eventualmente a condição n < 3 deixará de ser verdadeira (neste caso, no momento
em que n vale 3). Quando isso acontecer, o loop terminará e o código seguirá para os comandos abaixo
dele.

Loop infinito

Se retirarmos a condição de parada, então o código não para de executar nunca!

n = 0

while n < 3:
print(f'O valor de n é: {n}')

n += 1

print('O loop acabou')

Para forçar a parada do código, podemos usar as combinação Ctrl + C (de cancelar a operação).
Em IDEs como o Mu, geralmente há também algum botão de forçar a parada na interface.

Neste exemplo, o “código infinito” não produz nenhum problema, além de ficar emitindo a mesma
mensagem para o terminal indefinidamente. Mas se o código ficasse adicionando dados em um
arquivo, ou ficasse criando listas de números em memória, poderia acabar com o espaço em disco
e/ou memória!

Asimov Academy 45

Aprendendo Python: Conceitos Básicos

Palavra-chave break

Podemos usar a palavra-chave break para forçar a saída de um loop em certo ponto do código (isso
serve tanto para while loops quanto for loops). O código abaixo executaria até n = 9, mas com obreak,
ele acaba precocemente:

n = 0

while n < 10:
print(f'O valor de n é: {n}')
n += 1
if n == 5:

break

print('O loop acabou')

Palavra-chave continue

Podemos usar a palavra-chave continue para seguir imediatamente para a próxima iteração do
loop, funcionando assim como um “curto circuito”.

No exemplo abaixo, iteramos sobre uma sequência de números e para cada número n calculamos o
valor de 1 dividido por n. Usamos o continue para pular esta operação na iteração em que n vale 0,
de forma a evitar o erro de ZeroDivisionError:

for n in range(-5, 6):
if n == 0:

continue # Pula para evitar divisão por zero!
resultado = 1 / n
print(f'1 dividido por {n} = {resultado:.2f}')

Uso para while loop: pedir por um input específico

Um loop muito comum de ser usado com while é o while True. Como o valor True nunca deixará
de ser verdadeiro, este loop realiza uma ação infinitamente. Contudo, ainda podemos usar a palavra-
chave break para finalizá-lo.

Esta construção é muito usada para rodar um programa até que o usuário decida fechá-lo. No exemplo
abaixo, o código finaliza apenas quando o usuário passar o valor "q" para o input():

while True: # Infinito!
entrada = input('Digite qualquer coisa ("q" para sair): ')
if entrada == 'q':

break
print(f'O valor digitado foi: {entrada}')

print('O código acabou')

Asimov Academy 46

Aprendendo Python: Conceitos Básicos

Resumo

• Sintaxe de um while loop:

while condicao:
Repete a ação até condicao se tornar falsa

Final do loop

• Palavra-chave break: finaliza o loop atual instantaneamente.

• Palavra-chave continue: segue para a próxima iteração do loop instantaneamente.

• Usar loop while True para repetir ação indefinidamente, até o código encontrar um break!

Asimov Academy 47

Aprendendo Python: Conceitos Básicos

14. Dicionários e o operador in

Dicionários

Dicionários são um dos principais tipos de dados em Python. Com eles, podemos “mapear” ou associar
valores entre si, de acordo com alguma lógica.

Se pararmos para pensar, veremos que existem muitos casos de associação de valores na vida real:

• Cada país está associado à sua capital
• Cada produto de um mercado está associado ao seu preço
• Cada pessoa está associada a uma lista dos seus animais de estimação
• Cada CPF está associado a um nome

Todas essas associações podem ser representadas em Python através de dicionários.

Sintaxe de um dicionário

Um dicionário é composto por chaves associadas a valores. Cada associação é chamada de um par
chave-valor.

No código, representamos uma associação de uma chave com seu valor com dois pontos (:), e sepa-
ramos cada par chave-valor por vírgulas (,). O dicionário em si é definido com chaves ({ }).

Exemplo:
>>> capitais = {'Brasil': 'Brasília', 'França': 'Paris', 'Japão', 'Tóquio'}

>>> capitais
{'Brasil': 'Brasília', 'França': 'Paris', 'Japão', 'Tóquio'}

Da mesma forma como nas listas, podemos reestruturar o dicionário em linhas para facilitar a digitação
e compreensão:
>>> capitais = {

'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',

}
>>> capitais
{'Brasil': 'Brasília', 'França': 'Paris', 'Japão', 'Tóquio'}

Usando dicionários

De forma semelhante a listas, usamos colchetes para pegar valores do dicionário. A diferença é que,
ao invés de usarmos índices, usamos a chave para pegar o valor correspondente:

Asimov Academy 48

Aprendendo Python: Conceitos Básicos

>>> capitais['Brasil']
'Brasília'

>>> capitais['França']
'Paris'

>>> capitais['Japão']
'Tóquio'

Também de forma parecida com listas, tentar pegar uma chave que não está criada no dicionário
resulta em um erro específico (KeyError neste caso):

>>> capitais['Inglaterra']
KeyError: 'Inglaterra'

Dicionários também são dados mutáveis. É possível adicionar criar novas associações de chave-valor
usando o operador = (o mesmo que usamos pra criar variáveis):

>>> capitais['Inglaterra'] = 'Londres'
>>> capitais
{'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',
'Inglaterra': 'Londres'}

>>> capitais['Inglaterra']
'Londres'

• Importante: um dicionário possui chaves únicas, ou seja, não pode ter chaves repetidas. Se
eu passar um novo valor para uma mesma chave, ela é sobrescrita!

>>> capitais['Inglaterra'] = '????'
>>> capitais
{'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',
'Inglaterra': '????'}

>>> capitais['Inglaterra']
'????'

Além disso, embora os dicionários sejam mutáveis, suas chaves não podem ser dados mutáveis:

>>> capitais[['esta', 'chave', 'é', 'uma', 'lista']] = 'xxx'
TypeError: unhashable type: 'list'

Isso faz sentido se pensarmos na restrição de chaves repetidas: eu poderia começar com duas listas
distintas como chaves do dicionário, e modificá-las até que se tornem idênticas. Isso iria contra a regra
de um dicionário possuir chaves únicas. Para evitar esse problema, o Python proíbe dados mutáveis
como chaves de dicionários.

Também é possível deletar algum par chave-valor usando a palavra-chave del:

Asimov Academy 49

Aprendendo Python: Conceitos Básicos

>>> del capitais['Inglaterra']
>>> capitais
{'Brasil': 'Brasília', 'França': 'Paris', 'Japão', 'Tóquio'}

>>> capitais['Inglaterra']
KeyError: 'Inglaterra'

Iterando sobre dicionários

Se iterarmos sobre um dicionário, vamos iterar sobre suas chaves. A partir delas, é possível pegar os
valores:

for pais in capitais:
capital = capitais[pais]
print(f'A capital de {pais} é {capital}')

Ordem de iteração: os dicionários preservam sua ordem de inserção. Isto significa que, ao iterarmos
sobre ele, as chaves são devolvidas na ordem em que foram criadas:

dic = {} # Criando um dicionário vazio
dic = dict() # Forma alternativa para criar dicionário vazio

dic[10] = 'abc'
dic[3.14] = True
dic['CHAVE'] = 5
dic[False] = ''

print(dic)

for k in dic:
v = dic[k]
print(f'Chave: {k} -> Valor: {v}')

Por favor, não criem dicionários confusos como este! É apenas um exemplo para ilustrar a iteração.
Normalmente vamos querer trabalhar com dicionários que representem uma associação existente na
vida real.

O operador in com dicionários

Podemos usar o operador in para checar se a chave existe no dicionário, antes de acessá-la:

>>> capitais = {
'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',

}
>>> 'Brasil' in capitais
True

Asimov Academy 50

Aprendendo Python: Conceitos Básicos

>>> 'Inglaterra' in capitais
False

Dessa forma, é possível criar um script que checa se a chave existe ou não, e exibe uma mensagem de
acordo com o resultado (evitando assim o KeyError):
capitais = {

'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',

}

pais = 'Inglaterra'

if pais in capitais:
print(f'A capital do país {pais} é {capitais[pais]}')

else:
print(f'Não há capital registrada para o país {pais}')

Operador in em sequências

O operador in não é exclusivo de dicionários. Podemos utilizá-lo também com qualquer sequência
para checar se ela contém algum valor específico:
Listas
>>> valores = [1, 2, 3]
>>> 4 in valores
False

>>> 3 in valores
True

Tuplas
>>> nomes = ('Ana', 'Carlos', 'Eduardo')
>>> 'Bruno' in valores
False

>>> 'Ana' in valores
True

Strings
>>> texto = 'Eu estou estudando Python na Asimov Academy!'

>>> 'Java' in texto
False

>>> 'Python' in texto
True

Note que, no caso de strings, podemos usar o operador in para checar se qualquer palavra ou “sub-
string” está dentro de um string!

Asimov Academy 51

Aprendendo Python: Conceitos Básicos

Resumo

• Dicionários são associações entre valores, com cada chave associada a um valor.

• Dicionários são mutáveis. Suas chaves são únicas e não podem ser dados mutáveis.

>>> capitais = {
'Brasil': 'Brasília',
'França': 'Paris',
'Japão': 'Tóquio',

}

>>> capitais['Inglaterra'] = 'Londres'
>>> capitais['Brasil'] = '!'
>>> del capitais['Japão']
>>> capitais
{'Brasil': '!', 'França': 'Paris', 'Inglaterra': 'Londres'}

• O operador in é usado para checar se um valor está dentro de uma sequência.

• No caso de dicionários, x in d retorna se a chave x existe no dicionário d.

• No caso de strings, s in texto retorna se o “substring” s aparece dentro do string texto.

Asimov Academy 52

Aprendendo Python: Conceitos Básicos

15. Métodos

O que é um método?

Em Python, cada tipo de dado diferente (strings, ints, listas, dicionários) é considerado como sendo
um objeto próprio.

Existem operações que vamos querer realizar em um determinado tipo de dado, por exemplo:

• Strings: trocar letras maiúsculas por minúsculas
• Listas: adicionar um novo elemento ao final da lista
• Dicionários: combinar valores de 2 dicionários diferentes

Algumas dessas operações são tão comuns e úteis que já são definidas para cada um dos objetos.
Chamamos estas operações de método (de string, de lista, de dicionário. . .).

Outra forma de pensarmos em métodos é que são funções vinculadas a um objeto específico. Este
conceito de método não é exclusivo de Python: outras linguagens de programação usam a mesma
ideia.

Como usar um método

Os métodos são acessados usando um ponto final entre o objeto e o nome do método. Como são
similares a funções, métodos precisam ser chamados com parênteses () para executar.

Exemplo: limpar todos os elementos de um dicionário com o método dict.clear().

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}

print(produtos)

produtos.clear()

print(produtos)

Quais métodos existem? Que argumentos aceitam? Podemos descobrir isso da seguinte forma:

• dir(produtos): a função dir() retorna uma lista dos métodos existentes para o dicionário
produtos. (Os métodos que começam com dois underscore, como __str__, são internos do
Python e podem ser ignorados por enquanto).

Asimov Academy 53

Aprendendo Python: Conceitos Básicos

• help(produtos.nome_do_metodo): a função help() exibe a documentação de um
método

• “Vida real”: procuramos na documentação online e tutoriais com exemplos.

Como vamos aprender métodos

Vamos passar pelos principais tipos de dados que aprendemos neste curso, para entender que métodos
possuem e como podemos utilizá-los. Conforme formos passando pelos métodos, pense em como
você poderia aplicar cada um deles a algum problema, seja um problema que você encontra no seu
dia a dia, ou algum exercício anterior que poderia ser simplificado.

Métodos de dicionários

dict.clear()

Limpa todos os valores de um dicionário.

>>> produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}
>>> produtos.clear()
>>> produtos
{}

dict.get()

Retorna o valor associado a uma chave, ou retorna um valor substituo caso a chave não exista (valor-
padrão: None)

>>> produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}

>>> produtos.get('banana')
3.6

>>> produtos.get('pão')
9.0

Asimov Academy 54

Aprendendo Python: Conceitos Básicos

>>> produtos.get('arroz')

Caso a chave não exista, o valor retornado é None, que representa um valor “nulo”. Como o console
omite valores None por padrão, precisamos pegar o valor para exibi-lo em tela:

>>> resultado = produtos.get('arroz')
>>> print(resultado)
None

Também podemos passar um segundo argumento para ser o valor padrão, ao invés de None:

>>> resultado = produtos.get('arroz', 'não cadastrado')
>>> print(resultado)
não cadastrado

dict.setdefault()

Faz o mesmo que dict.get(), mas cria a associação chave-valor caso não exista:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}

print(produtos) # Dicionário original

preco = produtos.setdefault('banana', 100.0)

print(produtos) # chave existe -> dicionário não modifica
print(preco) # preço é o valor antigo da chave 'banana'

preco = produtos.setdefault('arroz', 100.0)

print(produtos) # chave não existe -> associação nova criada
print(preco) # preço é o valor novo adicionado

dict.keys(), dict.values(), dict.items()

Estes métodos retornam sequências contendo as chaves, valores, ou pares chave-valor de um di-
cionário, respectivamente. Muito utilizado para iterar sobre o dicionário, principalmente para iterar
sobre cada par com dict.items():

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,

Asimov Academy 55

Aprendendo Python: Conceitos Básicos

'pão': 9.00,
}

for chave in produtos.keys():
print(chave)

for preco in produtos.values():
print(preco)

for par in produtos.items():
print(par)

for chave, preco in produtos.items():
print(f'{chave} -> R$ {preco:.02f}')

dict.update()

Atualiza um dicionário a partir de outro. Atualizar significa que chaves novas são inseridas, e chaves
existentes são atualizadas:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}

novos_produtos = {
'massa': 5.70,
'banana': 4.40,

}

print(produtos)

produtos.update(novos_produtos)

print(produtos)

dict.copy()

Cria uma cópia independente de um dicionário:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

Asimov Academy 56

Aprendendo Python: Conceitos Básicos

}

produtos_copia = produtos.copy()
produtos_copia['morango'] = 3.30

print(produtos)
print(produtos_copia)

Métodos de números

float.as_integer_ratio()

Mostra dois inteiros que, quando divididos, geram (ou se aproximam) do valor do número:

>>> x = 4.5
>>> x.as_integer_ratio()
(9, 2) # 9 dividido por 2 é 4.5

>>> x = 38.125
>>> x.as_integer_ratio()
(305, 8) # 305 dividido por 8 é 38.125

float.is_integer()

Retorna True se o float representar um número inteiro (isto é, porção decimal com valor .0), caso
contrário retorna False:

>>> x = 4.5
>>> x.is_integer()
False

>>> x = 40.0
>>> x.is_integer()
True

Métodos de strings

str.upper() e str.lower()

Converte palavras para letras maiúsculas / minúsculas, respectivamente:

>>> palavra = 'Olá MUnDo!'
>>> palavra.uppercase()
'OLÁ MUNDO!'

>>> palavra.lowercase()
'olá mundo!'

Asimov Academy 57

Aprendendo Python: Conceitos Básicos

str.startswith() e str.endswith()

Checa se o string começa ou termina com certa parte de texto:

>>> arquivo = '2023_01_01_NotaFiscal.pdf'
>>> arquivo.startswith('2023_01_01')
True

>>> arquivo.startswith('2023_02_03')
False

>>> arquivo.endswith('.docx')
False

>>> arquivo.endswith('.pdf')
True

Podemos usar para encontrar um arquivo específico!

arquivo = '2023_01_01_NotaFiscal.pdf'

if arquivo.startswith('2023_01_01') and arquivo.endswith('.pdf'):
print('Encontrado arquivo! Enviando por email ...')

str.count()

Conta o número de ocorrências de um caractere ou substring:

>>> texto = 'Hoje em dia todo dia é um novo dia. Mais um dia chega. Dia!'
>>> texto.count('a')
7

>>> texto.count('dia')
4

A distinção entre maiúsculas e minúsculas faz com que o último "Dia" não seja contado. Podemos
corrigir usando métodos encadeados. Primeiro, vamos transformar o texto em letras minúsculas, e
em seguida contar a ocorrência do string "dia":

>>> texto = 'Hoje em dia todo dia é um novo dia. Mais um dia chega. Dia!'
>>> texto.lower().count('dia')
5

str.find() e str.index()

Retorna o primeiro índice onde há um caractere/substring no string:

Asimov Academy 58

Aprendendo Python: Conceitos Básicos

>>> seq = 'aaaaabaaaaaabaaaaaa'
>>> seq.find('b')
5

>>> seq.index('b')
5

Funcionam da mesma forma quando encontram a diferença é quando o substring não está presente:
o método str.find() retorna o valor -1, enquanto o método str.index() causa um erro:

>>> seq = 'aaaaabaaaaaabaaaaaa'
>>> seq.find('c')
-1

>>> seq.index('c')
ValueError: substring not found

str.isdigit() e str.isalpha()

Retorna se o string é composto apenas de algarismos numéricos ou apenas de letras, respectiva-
mente:

>>> s1 = '202363'
>>> s1.isdigit()
True

>>> s2 = 'mOinoiSAUInaSCiouNACS'
>>> s2.isalpha()
True

>>> s3 = 'Olá 2023 Python!'
>>> s3.isdigit()
False

>>> s3.isalpha()
False

str.replace()

Substitui um caractere/substring por outro:

>>> frase = 'Estou estudando Javascript!'
>>> frase.replace('!', '?')
'Estou estudando Javascript?'

>>> frase.replace('Javascript', 'Python')
'Estou estudando Python!'

Muito utilizado para remover espaços em branco e quebras de linha!

Asimov Academy 59

Aprendendo Python: Conceitos Básicos

>>> frase = 'Esta é uma frase comprida e bem estruturada.\nEsta frase marca o começo de um
novo parágrafo.'↪→

>>> print(frase)
Esta é uma frase comprida e bem estruturada.
Esta frase marca o começo de um novo parágrafo.

>>> nova_frase = frase.replace('\n', ' ').replace(' ', '')
>>> print(nova_frase)
Estaéumafrasecompridaebemestruturada.Estafrasemarcaocomeçodeumnovoparágrafo.

str.split() e str.join()

str.split() separa um string em um certo caractere, gerando uma lista. Por padrão divide nos
espaços, mas podemos passar um outro caractere para ser o delimitador:

>>> linha = 'Item1 Item2 Item3'
>>> linha.split()
['Item1', 'Item2', 'Item3']

>>> linha = 'Item1;Item2;Item3'
>>> linha.split(';')
['Item1', 'Item2', 'Item3']

str.join() faz o contrário: junta uma lista a partir de um caractere intermediário:

>>> nomes = ['Joana', 'Marcelo', 'Paulo']
>>> ' - '.join(nomes)
'Joana - Marcelo - Paulo'

Métodos de tuplas

Os métodos de tuplas também existem nas listas, e são os mesmos que já vimos para strings:

tuple.count()

Conta elementos

>>> tup = (0, 0, 0, 1, 0, 1, 0)
>>> tup.count(1)
2

tuple.index()

Retorna o índice do primeiro elemento igual ao argumento. Se não existir, IndexError:

Asimov Academy 60

Aprendendo Python: Conceitos Básicos

>>> tup = (0, 0, 0, 1, 0, 1, 0)
>>> tup.index(1)
3

>>> tup.index(2)
ValueError: tuple.index(x): x not in tuple

Métodos de listas

As listas possuem os métodos list.clear() e list.copy(), que já vimos nos dicionários, e
list.count() e list.index() que acabamos de ver nas tuplas.

l1 = [0, 0, 0, 1, 0, 1, 0]

l2 = l1.copy()

l1[0] = 'x'
l2.clear()

print(l1)
print(l2)

list.append()

Adiciona um elemento ao final da lista. é a principal forma de adicionar novos elementos em uma
lista!

numeros = []

for n in range(5):
numeros.append(n * 2)

print(numeros) # [0, 2, 4, 6, 8]

Podemos filtrar valores de uma lista se criarmos uma lista vazia, iterarmos sobre a lista original, e
usarmos o método list.append() apenas quando o elemento passar pelo filtro:

valores = [10, 30, -1, 0, 90, -100]

valores_positivos = []

for valor in valores:
if valor > 0:

valores_positivos.append(valor)

print(valores_positivos)

Asimov Academy 61

Aprendendo Python: Conceitos Básicos

list.extend()

Se usarmos list.append() com uma lista, a lista inteira entra como um único elemento:

>>> numeros = [1, 2, 3]
>>> numeros.append([4, 5, 6])
>>> numeros
[1, 2, 3, [4, 5, 6]]

Neste caso, vamos querer usarlist.extend()para inserir cadaelementoda lista dentro da primeira
lista:

>>> numeros = [1, 2, 3]
>>> numeros.extend([4, 5, 6])
>>> numeros
[1, 2, 3, 4, 5, 6]

Atenção: listas são mutáveis, e esta operação modifica a lista original! Se quisermos criar uma nova
lista, podemos fazer a mesma operação usando +:

>>> numeros = [1, 2, 3]
>>> novos_numeros = numeros + [4, 5, 6]
>>> numeros
[1, 2, 3]

>>> novos_numeros
[1, 2, 3, 4, 5, 6]

list.insert()

Parecido com list.append(), mas requer posição de inserção ao invés de adicionar ao final da
lista.

>>> vogais = ['a', 'i', 'o', 'u']
>>> vogais.insert(1, 'e')
>>> vogais
['a', 'e', 'i', 'o', 'u']

• Não dá IndexError (no pior caso, insere no começo ou final):

>>> vogais = ['a', 'i', 'o', 'u']
>>> vogais.insert(100, 'e')
>>> vogais
['a', 'i', 'o', 'u', 'e']

Mesmo assim, requer que saibamos a posição para inserir de antemão.

Asimov Academy 62

Aprendendo Python: Conceitos Básicos

list.pop()

Remove um elemento da lista e o retorna:

>>> valores = [150, 30, 50, 75, 45, 90]
>>> valor_removido = valores.pop()

>>> valor_removido
90

>>> valores
[150, 30, 50, 75, 45]

Por padrão pega o último elemento (fazendo assim a operação contrária ao list.append()), mas
aceita um índice para escolhermos o valor a remover:

>>> valores = [150, 30, 50, 75, 45, 90]
>>> valor_removido = valores.pop(0) # Remove o primeiro da lista
>>> valor_removido
150

>>> valores
[30, 50, 75, 45, 90]

Muito útil para processamento em sequência!

clientes = ['xxxx', 'yyyy', 'zzzz']

while clientes: # Enquanto lista não está vazia
cliente = clientes.pop()
print(f'Processando pedido do cliente {cliente}...')

print('Todos os pedidos processados!')
print(clientes)

list.reverse() e list.sort()

Como os nomes sugerem, são usados para inverter e ordenar os elementos:

>>> valores = [150, 30, 50, 75, 45, 90]
>>> valores.reverse()
>>> valores
[90, 45, 75, 50, 30, 150]

>>> valores.sort()
>>> valores
[30, 45, 50, 75, 90, 150]

Para ordenarmos os elementos do menor pro maior, podemos primeiro fazer chamar list.sort(),
e em seguida list.reverse().

Asimov Academy 63

Aprendendo Python: Conceitos Básicos

Para ordenar uma lista, é preciso que os elementos sejam comparáveis entre si! Não é possível ordenar
uma lista contendo strings e ints, porque Python não sabe comparar números e texto:

>>> valores = [150, 30, 'Python']
>>> valores.sort()
TypeError: '<' not supported between instances of 'str' and 'int'

Resumo

• Métodos são funções associadas a um objeto. Em geral, apresentam funcionalidade muito útil
para aquele tipo de dado

• Chamamos métodos com a sintaxe objeto.nome_do_metodo(), (possivelmente passando
argumentos dentro dos parênteses).

• Cada objeto possui seus métodos específicos, de acordo com operações comuns que gostaríamos
de realizar com ele.

• Utilize a lista de métodos acima para rever a utilidade de cada método!

Asimov Academy 64

Aprendendo Python: Conceitos Básicos

16. Aula extra – Compreensão de lista

Quando queremos filtrar valores em Python, é muito comum desenvolvermos um código como este:

valores = list(range(10))

maiores_que_cinco = []
for valor in valores:

if valor > 5:
maiores_que_cinco.append(valor)

print(maiores_que_cinco)
output: [6, 7, 8, 9]

Podemos recriar esta lógica em uma única linha, usando uma compreensão de lista!

A estrutura de uma compreensão de lista

A estrutura de uma compreensão de lista tem o seguinte formato:

NOVA_LISTA = [RESULTADO para cada ELEMENTO em SEQUÊNCIA se CONDIÇÃO]

Pode parecer confuso. Mas pensarmos no código anterior, já tínhamos esta estrutura básica distribuída
no bloco central:

NOVA_LISTA = []
para cada ELEMENTO em SEQUÊNCIA:

se CONDIÇÃO:
RESULTADO entra em NOVA_LISTA

Criando a compreensão de lista

Se reestruturarmos o código acima para uma compreensão de lista, temos:

valores = list(range(10))

maiores_que_cinco = [valor for valor in valores if valor > 5]

print(maiores_que_cinco)
output: [6, 7, 8, 9]

Para deixar ainda mais claro, podemos até reordenar cada bloco dentro da lista:

valores = list(range(10))

maiores_que_cinco = [

Asimov Academy 65

Aprendendo Python: Conceitos Básicos

valor # RESULTADO
for valor in valores # para cada ELEMENTO em SEQUÊNCIA
if valor > 5 # se CONDIÇÃO

]

print(maiores_que_cinco)
output: [6, 7, 8, 9]

Também é possível modificar os valores na lista original de acordo com uma lógica qualquer:

valores = list(range(10))

resultado = [
valor + 5 # RESULTADO
for valor in valores # para cada ELEMENTO em SEQUÊNCIA
if valor > 5 # se CONDIÇÃO

]

print(resultado)
output: [11, 12, 13, 14]

Por que usar compreensão de lista?

Pode parecer apenas um detalhe, mas usar compreensão de lista facilita bastante a escrita de código.
Ela é uma forma mais enxuta de criar listas a partir de outras listas, especialmente quando nos acos-
tumamos com sua sintaxe. Ao invés de precisarmos “ocupar” o código com um for loop de diversas
linhas, usamos a compreensão de lista para fazer a mesma tarefa em uma única linha.

Asimov Academy 66

Aprendendo Python: Conceitos Básicos

17. Funções

Criando funções

Até aqui, usamos algumas funções pré-fabricadas pelo Python. Oficialmente, são funções embutidas
(built-in functions) da linguagem. Mas podemos criar nossas próprias funções para o nosso código!

Sintaxe de criação de funções

• def para definir uma função
• Abrir e fechar parênteses para definir os parâmetros
• Dois pontos para iniciar o corpo da função
• Corpo da função com indentação
• Ao final da função, algum valor pode ser retornado dela usando a palavra-chave return

Exemplo: função que soma o valor 2 ao número que recebe como argumento:

def somar_dois(n):
return n + 2

Usando a função
print(somar_dois(10))

print(somar_dois(0))

print(somar_dois(-3.15))

O importante aqui é entender que o valor 10, que é passado com argumento da função, ocupa o
espaço do parâmetro n, que definimos ao criar a função!

Tipo de dado e nomenclatura

Os tipos de dados que as funções aceitam não precisam ser declarados. Na função acima, em nenhum
lugar informamos que n é um int. Na realidade, a função funciona também com float, como
pudemos ver.

Python nunca vai impor uma declaração do tipo de dado para determinada função. Enquanto o
programa não der bug, ele segue adiante!

Isso é bom e ruim ao mesmo tempo: bom porque nos permite ser flexíveis, e ruim porque podemos
introduzir bugs em algum ponto do código sem perceber.

Asimov Academy 67

https://docs.python.org/3/library/functions.html

Aprendendo Python: Conceitos Básicos

Escolhendo nomes

Quando crio uma função, é importante escolher bem tanto o nome da função quanto o nome dos
parâmetros (se houver). Ambos são formas de entendermos o que exatamente a função faz!

A função abaixo serve para concatenar texto. Podemos chamá-la simplesmente de c:

def c(s1, s2):
return s1 + s2

print(c('xxx', 'yyy'))

print(c('Python', 'Básico'))

print(c('Meu nome é ', 'Juliano'))

Mas faz mais sentido chamá-la de algo descritivo, como concatenar_texto:

def concatenar_texto(texto1, texto2):
return texto1 + texto2

print(concatenar_texto('xxx', 'yyy'))

print(concatenar_texto('Python', 'Básico'))

print(concatenar_texto('Meu nome é ', 'Juliano'))

E lembre-se: não importa o nome da função, nada impede que eu passe outro tipo de dado para ela.
Enquanto ela não gerar um erro, vai executar, mesmo que não faça exatamente o que eu gostaria.

A função concatenar_texto, por mais que tenha sido criada apenas para juntar dois strings,
também serve para somar 2 valores. Isso é consequência da flexibilidade de Python.

def concatenar_texto(texto1, texto2):
return texto1 + texto2

print(concatenar_texto(2, 3))

Para quê usar funções?

As funções que vimos aqui são simples, mas pensem em qualquer bloco de código que criamos nos
desafios, que pudessem ser representadas por uma ação única:

• Validação de input do usuário
• Perguntar por um chute (desafio de adivinhe o número)

Asimov Academy 68

Aprendendo Python: Conceitos Básicos

• . . .

Exemplo: transformando validação de input em um código próprio:

def pegar_input_validado():
while True: # Infinito!

opt = input('Escolha uma opção (1, 2) | "q" para sair: ')
if opt == 'q':

break
elif opt not in ('1', '2'):

print('Opção inválida! Digite 1 ou 2.')
continue

else:
print(f'Opção selecionada: {opt}')
return opt

for n in range(3):
opcao = pegar_input_validado()
print(f'Opção selecionada: {opcao}')

Funções nos ajudam a organizar nosso próprio código, dando um nome a blocos lógicos que fazem
uma ação específica. Além disso, se eu descobrir que há um bug no código que pega um input validado,
já sei onde procurar: na sua função!

Parâmetros e argumentos

Formalmente, as variáveis na definição da função são chamados de parâmetros. Eles são substituídos
por argumentos na hora de chamar a função.

No exemplo abaixo, n é o parâmetro, e x é o argumento:

def somar_dois(n):
return n + 2

x = 10

resultado = somar_dois(x)
print(resultado)

No dia a dia, os conceitos acabam sendo intercambiáveis, mas é importante ter claro que são coisas
distintas.

Parâmetros com valor padrão

Podemos criar valores-padrão para parâmetros:

Asimov Academy 69

Aprendendo Python: Conceitos Básicos

>>> def adicionar_final(texto, final='!!!'):
... return texto + final

>>> adicionar_final('Olá')
'Olá!!!'

>>> adicionar_final('Olá', '???')
'Olá???'

Quando não passamos um dos argumentos, o valor padrão do parâmetro é utilizado.

O único detalhe é que parâmetros com valor padrão devem obrigatoriamente vir após os demais. O
Python tem essa obrigação para evitar confusão na hora de chamar a função:

>>> def adicionar_final(texto='Olá', final):
... return texto + final
SyntaxError: non-default argument follows default argument

Se eu conseguisse definir a função da forma acima, e a chamasse comadicional_final('XXXX'),
ficaria ambíguo se o valor 'XXXX' deveria substituir o parâmetro texto (já que há apenas um
argumento na chamada da função) ou o parâmetro final (já que o parâmetro texto possui um
valor padrão).

Passando argumentos através de palavras-chave

Se soubermos o nome dos parâmetros, podemos passá-los explicitamente, mesmo que estejam fora
de ordem. Observe:

def dividir(a, b):
if b == 0:

return 'Impossível dividir!'
else:

return a / b

print(dividir(10, 5))

print(dividir(a=10, b=5))

print(dividir(a=10, b=0))

print(dividir(b=10, a=0))

Muitos programas como o Mu ou outras IDEs exibem o nome dos parâmetros quando estamos es-
crevendo código. Isso nos ajuda a chamarmos as funções passando parâmetros de forma explícita, e
ajuda na leitura e compreensão do nosso próprio código.

Asimov Academy 70

Aprendendo Python: Conceitos Básicos

Em códigos mais avançados, é comum termos funções com muitos parâmetros, sendo que apenas
poucos argumentos são passados diretamente para a função. Os valores-padrão são utilizados para
todos os outros parâmetros!

def funcao_complexa(
param_1=0,
param_2=0,
param_3=0,
param_4=0,

):
return param_1 + param_2 + param_3 + param_4

funcao_complexa(param_3=10)

Funções sem parâmetros

É possível criar funções sem parâmetros:

def retornar_lista():
return [1, 2, 3]

print(retornar_lista())

É mais comum pensarmos em funções como “caixas” para as quais entregamos algum input e recebe-
mos seu output. Contudo, em alguns casos podemos querer ter funções que não recebam parâmetros
e nem retornem nada, como no caso de uma função que exibe algum texto na tela:

def dizer_ola():
print('Olá!')

dizer_ola()
dizer_ola()
dizer_ola()

Dito isso, tome cuidado para não deixar seu código complexo. Funções sem parâmetros são indicativos
de um fluxo confuso no seu código!

O valor None

Além de não ter parâmetros, a função dizer_ola() que definimos acima também não retorna
nada. . . Ou pelo menos parece não retornar nada.

Na realidade, a função retorna o valor None, que representa a “ausência” de valor. Este valor é um
nome próprio em Python, escrito com letra Nmaiúscula.

Asimov Academy 71

Aprendendo Python: Conceitos Básicos

É bastante utilizado como “valor sentinela” para indicar que uma operação falhou, como por exemplo
no método dict.get():

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pão': 9.00,

}

print(produtos.get('banana')) # Output: 3.6

print(produtos.get('pão')) # Output: 9.0

print(produtos.get('arroz')) # Output: None

Note que o valor None não é o número zero, pois não posso fazer contas matemáticas com ele. Em
outras linguagens de programação, esse valor é comumente chamado de “null”, “NA”, entre outros
nomes.

Retornando None

Qualquer função que não possua um return explícito vai retornar None:

def dizer_ola():
print('Olá!')

retorno = dizer_ola()
print(retorno)

Caso eu prefira, posso ser explícito e retorná-lo diretamente:

def dizer_ola():
print('Olá!')
return None

retorno = dizer_ola()
print(retorno)

def dizer_ola():
print('Olá!')
return # também funciona assim

retorno = dizer_ola()
print(retorno)

Asimov Academy 72

Aprendendo Python: Conceitos Básicos

Funções sem retorno

A própria função print é um exemplo de função que não retorna nada:

retorno = print('Olá!')
print(retorno)

Alguns métodos também não retornam valores, principalmente aqueles que modificam dados
mutáveis:

lista = [1, 2, 3]
lista.append(4)

print(lista)

retorno = lista.append(5)

print(lista)
print(retorno)

Muitos iniciantes na linguagem esperam que a linha retorno = lista.append(5) devolva
uma nova lista, e se surpreendem que a variável retorno esteja vazia. Na realidade, o método
list.append() modifica a lista que chama o método diretamente, sem que seja necessário re-
tornar nada. Isso é uma decorrência direta da mutabilidade de listas!

Em Python, se diz que o método list.append() modifica os dados in-place, ou seja, mantendo-os
na mesma variável.

Por outro lado, métodos que trabalham com dados imutáveis vão sempre retornar um novo objeto (já
que não podem modificar o objeto que chama o método):

texto = 'Python'

print(texto)

retorno = texto.upper()

print(texto)
print(retorno)

Confusão com console de Python

O console de Python sempre exibe valores retornados, exceto quando o valor é None. Essa omissão
é útil quando a conhecemos e estamos testando código, mas esse comportamento pode confundir
iniciantes da linguagem!

>>> lista = [1, 2, 3]
>>> lista.append(4) # Aparentemente sem retorno no console!

Asimov Academy 73

Aprendendo Python: Conceitos Básicos

>>> texto = 'Python'
>>> texto.upper() # Com retorno no console!
"PYTHON"

O mais confuso é a funçãoprint(). A função por si só retornaNone, que é omitido do console. Mas o
texto aparece no console de qualquer forma simplesmente porque este é o comportamento da função
print()!

>>> print('Olá') # None retornado, mas texto aparece no console
Olá

Estes conceitos são detalhes em Python, mas é bom entender para não se confundir nos seus códigos.

Se em algum momento você estiver trabalhando com uma variável que contém o valorNone, provavel-
mente você esperava obter algum valor de retorno de alguma função / método, mas este retornou
None. Fique de olho!

Resumo

• Criamos nossas próprias funções com a sintaxe:

def nome_funcao(parametro1, parametro2='valor padrão vai aqui'):
corpo da função vai aqui
return algum_valor

• E depois chamamos as funções como qualquer outra função:

>>> nome_funcao('XXX')
...

>>> nome_funcao(parametro1='YYY', parametro2='ZZZ')
...

• A lógica do corpo da função é inteiramente definida por nós mesmos, de acordo com o que
queremos que ela faça.

• Funções que não retornem nenhum valor acabam por retornar um valor nulo, chamado None.

• O valorNone também é retornado pela funçãoprint(), e por métodos que atuem diretamente
em objetos mutáveis, como list.append() ou dict.update().

Asimov Academy 74

Aprendendo Python: Conceitos Básicos

18. Módulos de Python e a biblioteca padrão

Importação

Não estamos limitados apenas ao código que escrevemos e às funções built-in de Python. Podemos
também importar conteúdo de outros scripts através de módulos! Até aqui, estive trabalhando sempre
no mesmo script, o hello_world.py.

Vamos criar o seguinte script chamado meu_modulo.py, que será importado a partir de outro
script:

def minha_funcao():
print('Rodando "minha_funcao" do módulo "meu_modulo"!')
return 10

x = 30

Rode o script abaixo da mesma pasta em que está o script meu_modulo.py:

import meu_modulo

retorno = meu_modulo.minha_funcao()

print(retorno)

print(meu_modulo.x)

Como pudemos ver, nosso script tem acesso a todas as variáveis e funções que estão vinculadas ao
script meu_modulo.py!

A palavra-chave import

Usamos a palavra-chave import para importar algum módulo. Por convenção, sempre importamos
tudo no topo do script. Posso importar um módulo de formas diferentes.

1) Importando o módulo em si: variáveis ficam vinculadas ao nome do módulo

import meu_modulo

retorno = meu_modulo.minha_funcao()

print(retorno)

print(meu_modulo.x)

2) Importando cada variável individualmente: acesso apenas com o nome da variável.

Asimov Academy 75

Aprendendo Python: Conceitos Básicos

from meu_modulo import minha_funcao, x

retorno = minha_funcao()

print(retorno)

print(x)

3) Importando todas as variáveis (com *): importo todos os valores do módulo.

from meu_modulo import *

retorno = minha_funcao()

print(retorno)

print(x)

A opção 3) é prática, porém esconde o nome das variáveis. Pode ser que alguma variável minha seja
sobrescrita por um nome que é importado!

Alias

Podemos mudar o nome do módulo ao importar. Isso nos ajuda a abreviar nomes compridos, ou a dar
nomes mais significativos a algum módulo:

import meu_modulo as mm

retorno = mm.minha_funcao()

print(retorno)

print(mm.x)

Também posso fazer isso com variáveis individuais de um módulo:

from meu_modulo import minha_funcao as mf, x as y

retorno = mf()

print(retorno)

print(y)

Pra quê módulos?

Da mesma forma como funções nos ajudam a organizar blocos de código dentro de um script, módulos
nos ajudam a organizar código em pedaços que façam sentido. Por exemplo, posso querer organizar

Asimov Academy 76

Aprendendo Python: Conceitos Básicos

meu código que acessa um banco de dados fica separadamente do código que manipula e analisa os
dados, que por sua vez está separado do código que exibe os dados em um dashboard.

Se você conseguir organizar tudo em um script, ótimo. Mas é comum em projetos maiores ou mais
complexos dezenas de scripts de Python, cada um fazendo uma ação específica.

Essa divisão ajuda também na hora de organizar trabalho em equipe: cada pode focar em um ponto
diferente do programa (isto é, em arquivos distintos).

A biblioteca padrão

Não precisamos fazer tudo do zero! Python inclui uma biblioteca padrão que contém inúmeras fun-
cionalidades (inúmeras mesmo), prontas para utilizarmos. Estão disponíveis em qualquer instalação
padrão de Python. Portanto, temos garantia de que vamos conseguir importá-las sem precisar instalar
nada a mais!

O site principal da biblioteca padrão está neste link.

Tour por alguns módulos da biblioteca padrão

math.py: contas e definições matemáticas avançadas.

import math

print(math.pi)

print(math.log(16, 2))

datetime.py: objetos que representam datas e horas.

import datetime

print(datetime.datetime.now())

agora = datetime.datetime.now()
ano_2000 = datetime.datetime(2000, 1, 1)

print(agora - ano_2000)

random.py: módulo para sorteios aleatórios de números e valores.

import random

for _ in range(5):
n = random.randint(1, 10)
print(f'Número escolhido: {n}')

Asimov Academy 77

https://docs.python.org/3/library/index.html

Aprendendo Python: Conceitos Básicos

nomes = ['Juliano', 'Marcos', 'Pedro']

for _ in range(5):
nome = random.choice(nomes)
print(f'Nome escolhido: {nome}')

os.py: módulo de interação com meu sistema operacional e seus arquivos.

import os

print(os.getcwd())

print(os.listdir())

time.py: módulo para medição de tempo (ex: medir quanto tempo o programa leva para executar).

import time

inicio = time.time()

print('Primeira linha')
time.sleep(2)
print('Segunda linha')

final = time.time()

tempo_execucao = final - inicio

print(f'Script rodou em {tempo_execucao:.3f}')

Utilize a biblioteca padrão!

Programadores experientes já passaram muitas vezes pela seguinte situação: gastar tempo escrevendo
código para algo que já existia na biblioteca padrão.

Às vezes, esse processo de “reinventar a roda” é bom para o aprendizado. Mas pensando em produção
de código, além de ser uma “perda de tempo”, provavelmente o código final será pior que o código
na biblioteca padrão. Afinal de contas, o código da biblioteca padrão já foi testado por milhares ou
milhões de desenvolvedores que o utilizam todos os dias!

Resumo

• Importe scripts com a palavra-chave import.

• É possível importar de diferentes formas:

Asimov Academy 78

Aprendendo Python: Conceitos Básicos

import modulo

import modulo as M

from modulo import X, Y, Z

from modulo import X as xxx

from modulo import *

Utilize funcionalidade da biblioteca padrão sempre que possível!

Asimov Academy 79

	01. Como Aprender Python?
	Dicas para estudar Python
	Como se escreve código Python

	Preciso mesmo usar o Mu?

	02. Conhecendo a IDE Mu
	Instalação
	Criando o primeiro script: Hello World
	A função print()
	Erros em Python
	Resumo

	03. Script, console e debugger
	Scripts
	Console
	Qual utilizar?
	Código em script
	Código no console

	Depurador (debugger)
	Resumo

	04. Números em Python: int e float
	int
	float
	A função type
	Matemática básica com Python
	Regras básicas de matemática
	Resumo

	05. Texto em Python: str
	Texto e números
	Operações com strings
	Tamanho de um string
	Funções e tipos de dados
	Resumo

	06. Variáveis
	Regras para nome de variáveis
	Cuidado: sobrescrevendo nomes já existentes
	Resumo

	07. Inserindo e formatando texto
	A função input()
	Inserindo variáveis no texto com f-strings
	Quebras de linha
	Strings brutos
	Resumo

	08. Controle de fluxo e operadores
	Controle de fluxo na vida real
	Controle de fluxo em Python: if e else
	Sintaxe de controle de fluxo
	A palavra-chave elif
	Operadores de comparação
	Operadores booleanos
	Recriando o controle de fluxo da imagem
	Resumo

	09. Listas e tuplas
	Listas
	Indexação
	Modificando listas
	Tuplas
	Resumo

	10. Sequências e slicing
	Sequências
	Sequências verdadeiras e falsas
	Slices
	O valor de pulo no slice
	Resumo

	11. Função range e for loops
	A função range
	Função range vs slicing
	Parâmetros de um range: Start, stop, step
	For loops
	Repetindo ações múltiplas vezes
	Resumo

	12. Iterando sobre sequências
	Formatando sequências
	Desempacotamento de sequências
	Resumo

	13. While Loops, break e continue
	While loops
	Loop infinito
	Palavra-chave break
	Palavra-chave continue
	Uso para while loop: pedir por um input específico
	Resumo

	14. Dicionários e o operador in
	Dicionários
	Sintaxe de um dicionário
	Usando dicionários
	Iterando sobre dicionários
	O operador in com dicionários
	Operador in em sequências
	Resumo

	15. Métodos
	O que é um método?
	Como usar um método
	Como vamos aprender métodos

	Métodos de dicionários
	dict.clear()
	dict.get()
	dict.setdefault()
	dict.keys(), dict.values(), dict.items()
	dict.update()
	dict.copy()

	Métodos de números
	float.as_integer_ratio()
	float.is_integer()

	Métodos de strings
	str.upper() e str.lower()
	str.startswith() e str.endswith()
	str.count()
	str.find() e str.index()
	str.isdigit() e str.isalpha()
	str.replace()
	str.split() e str.join()

	Métodos de tuplas
	tuple.count()
	tuple.index()

	Métodos de listas
	list.append()
	list.extend()
	list.insert()
	list.pop()
	list.reverse() e list.sort()

	Resumo

	16. Aula extra – Compreensão de lista
	A estrutura de uma compreensão de lista
	Criando a compreensão de lista
	Por que usar compreensão de lista?

	17. Funções
	Criando funções
	Sintaxe de criação de funções

	Tipo de dado e nomenclatura
	Escolhendo nomes
	Para quê usar funções?
	Parâmetros e argumentos
	Parâmetros com valor padrão
	Passando argumentos através de palavras-chave
	Funções sem parâmetros
	O valor None
	Retornando None
	Funções sem retorno
	Confusão com console de Python
	Resumo

	18. Módulos de Python e a biblioteca padrão
	Importação
	A palavra-chave import
	Alias
	Pra quê módulos?
	A biblioteca padrão
	Tour por alguns módulos da biblioteca padrão
	Utilize a biblioteca padrão!
	Resumo

