Aprendendo Python: Conceitos Basicos

Asimov Academy

ASIMOV

Aprendendo Python: Conceitos Basicos

Contetudo

01. Como Aprender Python?
Dicas paraestudarPython
ComoseescrevecodigoPython

02. Conhecendo a IDE Mu
Instalagdo e
Criando o primeiro script: Hello World
Afuncaoprint () o i i e e e e e e e e
Errosem Python L e e
Resumo o e e e

03. Script, console e debugger

SCHPES . . o e e e e e e e e
Console . . . o
Qualutilizar? e e e e

COdigoemsCript v i e e e e

Codigonoconsole
Depurador (debugger) e
Resumo e e

04.

05.

Numeros em Python: int e float

TNt L
float
Afuncdotype
Matematica basicacomPython
Regras basicasde matematica
Resumo

Texto em Python: str

Texto e nNUMEros v v i v i it e e e
Operagdescomstrings v e
Tamanhodeumstring
FungBesetiposdedados.
Resumo

15
15
15
15
15
16
16

18
18
18
19
19
20

Asimov Academy

Aprendendo Python: Conceitos Basicos

06. Variaveis

Regrasparanomedevariaveis e

Cuidado: sobrescrevendo nomes jaexistentes

Resumo

07. Inserindo e formatando texto

Afuncaoinput() . ..

Inserindo varidveis no textocomf-strings

Quebrasdelinha
Stringsbrutos
Resumo

08. Controle de fluxo e operadores

Controledefluxonavidareal @ i i i e

Controle de fluxoem Python: ifeelse

Sintaxede controledefluxo e

A palavra-chaveelif .

Operadoresde comparagan v v v v it i i e e e e e e e e e e e e e e e e

Operadores booleanos .

Recriando o controledefluxodaimagem o L.

Resumo

09. Listas e tuplas
Listas
Indexagcao
Modificando listas . . .

10. Sequéncias e slicing
Sequéncias

Sequénciasverdadeirasefalsas

Slices
O valor de pulo no slice .
Resumo

11. Funcdo range e for loops

Afuncdorange
Funcdo range vsslicing

21
21
22
23

24
24
24
25
25
26

27
27
27
28
28
28
29
30
30

32
32
32
33
34
34

35
35
35
36
38
38

39
39
39

Asimov Academy

Aprendendo Python: Conceitos Basicos

12.

13.

14.

15.

Parametros de um range: Start, stop,step
Forloops e
Repetindo a¢Bes multiplasvezes
Resumo

Iterando sobre sequéncias

Formatandosequéncias
Desempacotamento desequéncias
Resumo e e

While Loops, break e continue

Whileloops e
Loopinfinito
Palavra-chavebreak
Palavra-chave continue
Uso parawhile loop: pedir poruminput especifico
Resumo

Dicionarios e o operador in

DICIONANIOS . . . v v o e
Sintaxedeumdicionario
Usando diciondrioso v v i i it
Iterando sobre dicionarios
O operador incomdicionarios
Operadorinemsequéncias
Resumo e

Métodos

Oqueéummétodo?
Comousarummétodo
Comovamos aprendermétodos

Métodosdediciondrios
dict.clear()
dict.get()
dict.setdefault()

dict.keys(), dict.values(), dict.items()

dict.update()
dict.copy() o e

42
42
42
44

45
45
45
46
46
46
47

48
48
48
48
50
50
51
52

53
53
53
54
54
54
54
55
55
56
56

Asimov Academy

Aprendendo Python: Conceitos Basicos

Métodosde nlmeros v i i i e e e 57
float.as_integer_ratio() 57
float.is_integer () e 57

Métodosdestrings i e e e 57
str.upper()estr.lower() 57
str.startswith() estr.endswith() 58
str.count () . . . ot e e e e e e e 58
str.find() estr.index() 58
str.isdigit() estr.isalpha(), 59
str.oreplace() i e e 59
str.osplit() estr.join() e 60

Métodosdetuplas e 60
tuple.count() e 60
tuple.index () o i e e e e e 60

Métodosdelistas e 61
Tist.append () e 61
Tist.extend () o i e 62
Tist.insert() i e e e e e 62
TAst.pop() o ot e e 63
list.reverse() elist.sort() 63

Resumo o L e e 64

16. Aula extra - Compreensao de lista 65

Aestruturadeumacompreensdodelista Lo . 65

Criandoacompreensaodelista e 65

Por que usarcompreensaodelista? L L . 66

17. Fungdes 67

Criandofungdes e e e e e e e e e e 67
Sintaxe de criagcdodefungdes 67

Tipodedadoenomenclatura e 67

Escolnendonomes L e e e e e 68

Paraquéusarfungdes? e e e 68

Parametros e argumentos e e e e e e e e e e e e e e e e e 69

Parametroscomvalorpadrdo e e e e 69

Passando argumentos através de palavras-chave 70

Fungdessem parametros e e e 71

OvalorNoNne e e e e e e 71

Asimov Academy 4

Aprendendo Python: Conceitos Basicos

18.

Retornando NoNne 0 e e e e e 72
FungBessemretorno o L e e e e 73
ConfusaocomconsoledePython 73
Resumo o e e e e e e e e 74
Modulos de Python e a biblioteca padrao 75
Importagao e e e e 75
Apalavra-chave import e e 75
Alias . . . e e e e 76
Praquémodulos? e 76
Abibliotecapadrao e e e 77
Tour por alguns médulos da bibliotecapadrdo 77
Utilize a bibliotecapadrao! e 78
Resumo o e e e e e e e 78

Asimov Academy

Aprendendo Python: Conceitos Basicos

01. Como Aprender Python?

Bem-vindos a apostila do curso “Aprendendo Python: Conceitos Basicos” da Asimov Academy! Nesta
apostila, nosso foco é aprender a linguagem de programacéo Python.

Cada capitulo acompanha uma das aulas do curso e introduz um conceito novo. Dessa forma, iremos
construindo nosso conhecimento de forma incremental. Ao longo da apostila, séo abordados diversos
conceitos que qualquer programador de Python utiliza diariamente ao escrever seus codigos.

Dicas para estudar Python

Reforcamos aqui o nosso principal mantra dentro da Asimov:
Pratique!

O consenso entre programadores é que s aprendemos a programar a partir da pratica! Portanto,
tente realmente digitar todos os exemplos demonstrados, e resolver os desafios antes de olhar as
respostas. Volte para as aulas anteriores e revisem o conte(ido se necessario. Utilize também a nossa
comunidade caso vocé esteja com dificuldades.

Dito tudo isso: lembre-se de que parte do processo de aprendizado, especialmente para quem é
autodidata, é conseguir encontrar as respostas das suas perguntas. Os melhores programadores
ndo sdo aqueles que decoraram todo o codigo, mas sim aqueles que conseguem encontrar a resposta
de qualquer divida rapidamente, seja através do Google, ChatGPT, ou consultando o material das
aulas.

Como se escreve codigo Python

Como de fato escrevemos cddigo Python?
Tudo comeca com um coédigo-fonte, que é um arquivo com comandos na linguagem Python.

Existem programas muito utilizados para ler e escrever codigos. Estes programas sao chamados coleti-
vamente de IDEs (do inglés Integrated Development Environment, ou Ambiente de Desenvolvimento
Integrado).

Uma IDE é um ambiente montado e configurado para nos ajudar a escrever cédigo. As mais famosas
IDEs para Python, atualmente, sao VS Code e PyCharm.

Dito isso, a configuracdo inicial de uma IDE ndo é exatamente simples. Por isso, vamos utilizar outra
IDE feita especialmente para o ensino de Python, chamada Mu. Dessa forma, conseguiremos focar em
aprender codigo Python o mais rapido possivel!

Asimov Academy 6

Aprendendo Python: Conceitos Basicos

Preciso mesmo usar o Mu?

Caso vocé ja saiba usar VS Code ou PyCharm, ou quer se desafiar e usar estes programas logo de cara,
ndo tem problema. Os cddigos e os exemplos vao funcionar da mesma forma.

A diferenga é que IDEs avancadas possuem diversas funcionalidades que, para quem esta comecando,
pode dificultar o aprendizado. Também existirdo algumas diferencas no layout dos botGes entre as
IDEs avancadas e o Mu. Mas a opg¢do é inteiramente sua.

Vamos comecar entdo a programar em Python com o Mu!

Asimov Academy 7

Aprendendo Python: Conceitos Basicos

02. Conhecendo a IDE Mu

O programa Mu é uma IDE voltada especificamente para o aprendizado de Python. Ela simplifica
bastante a parte mais complicada de instalacdo e setup de Python, pois ja inclui sua instalagdo propria
de Python, embutida no programa.

P +) &) &) () (B M (@) Q) &) = (2)0

Modo Novo Abrir Salvar Executar Depurar REPL Grafico Aumentar Diminuir Tema Verificar ~ Organizar Ajuda Sair
scriptpy X

1 print('Bem-vindos ao curso de Python!"')

2

3 print('Vocé estd aprendendo Python na Asimov Academy!')

4

5

python3 4

Instalacao

Baixe o Mu a partir do site: https://codewith.mu/. Ha links para a versdo para Windows, Mac e Linux.

Criando o primeiro script: Hello World

Quando estamos aprendendo linguagens de programacao, a tradi¢cdo é escrever o Hello World
como o primeiro script. Este cdigo simplesmente exibe o texto “Hello World!” no output.

Para escrevermos este codigo no Mu, escreva o contelido abaixo dentro da janela principal:

print('Hello World!")

Em seguida, clique em Salvar e salve o c6digo como um arquivo Python (extensdo . py) no seu
computador. Nomeie o script de hello_world. py.

Aperte o botdo Executar e veja o resultado em tela! No Mu, o cddigo permanece ativo mesmo apods
execucao, entdo clique em Parar para finalizar a execucao.

Asimov Academy 8

https://codewith.mu/

Aprendendo Python: Conceitos Basicos

A funcao print()

print() é uma fungao em Python. Quando executamos (“chamamos”) esta funcdo, um texto é
exibido no output. Para chamarmos qualquer funcado, precisamos digitar seu nome, e em seguida abrir
e fechar parénteses.

Algumas fun¢des aceitam argumentos. No caso da funcdo print (), ela simplesmente pega todos
os argumentos entregues a ela e os exibe no output.

Valores que ndo forem “printados” ndo aparecem no output. Modifique o codigo para o c6digo abaixo
e execute novamente (o Mu salva as altera¢Ges automaticamente ao executar):

print('Hello World!")

print("Estou aprendendo Python!")

A segunda linha ndo aparece no output, porque ndo usamos a fun¢do print()!

Erros em Python

Modifique o codigo para o cddigo abaixo e rode novamente:

print('Hello World!")

Note que colocamos aspas simples na esquerda, e aspas duplas na direita. Isso causa um erro em
Python. No seu output deve ter algo como:

File [...], line 1
print("Hello World!")

SyntaxError: EOL while scanning string literal

Sempre que vocé encontrar um erro em Python (também conhecido como Exception ou Exceg¢do),
ndo se assuste! Erros sdo extremamente comuns em programagdo. Lembre-se sempre de ler a
mensagem de erro e tentar entender o que ela esta tentando lhe dizer, para entdo modificar o seu
cddigo e soluciona-lo.

Em Gltimo caso, copie e cole a mensagem de erro no Google. As chances de alguém ja ter encontrado
0 mesmo erro que vocé sdo muito altas, especialmente quando vocé esta comecando a aprender a
programar. Sem brincadeiras: saber ler mensagens de erro e procurar por respostas rapidamente
no Google sdo algumas das principais habilidades que bons programadores desenvolvem com o
tempo.

Asimov Academy 9

Aprendendo Python: Conceitos Basicos

Resumo

« Escreva cddigo e salve em um script para executa-lo no Mu.

+ Useafuncdo print() paraexibir algum texto ou valor no console.

+ Leia as mensagens de erro e busque por solugdes na internet.

Asimov Academy

10

Aprendendo Python: Conceitos Basicos

03. Script, console e debugger

Podemos rodar c6digo em Python de duas formas: estruturando uma série de comandos em um script
de Python, ou escrevendo e executando cada linha de cédigo de forma interativa, através de um
console de Python.

Scripts

Scripts sdo usados para criar um arquivo contendo codigo Python. Arquivos Python possuem a extensao
. py. Este arquivo fica salvo dentro de alguma pasta no seu computador, pronto para ser executado.

Programas capazes de editar um script de Python sdo chamados de editores de texto. O exemplo mais
basico de editor de texto é o bloco de notas do Windows, porém ha opc¢es melhores para escrever
codigo Python. A janela principal do Mu é um editor de texto.

Uma vez criado um script, é preciso executa-lo a partir de um Interpretador de Python. O Mu inclui
um interpretador de Python na sua instalacao. Portanto, basta abrir o script no programa e clicar no
botdo Executar na barra de ferramentas. O resultado do codigo aparecera na secao de output.

+))L (&) (% @M (@ QG) =20

Modo Novo Abrir Salvar Parar Depurar REPL Gréfico Aumentar Diminuir Tema Verificar Organizar Ajuda Sair
scriptpy X
1 print('Bem-vindos ao curso de Python!"')

2
3 print('Vocé esta aprendendo Python na Asimov Academy!') e\
4|

Editor
de texto

Em execucao: script.py
Bem-vindos ao curso de Python!

Vocé esta aprendendo Python na Asimov Academy! Output
>>>

'/

Python 3 Q

Asimov Academy 11

Aprendendo Python: Conceitos Basicos

Console

O console é um ambiente que permite a execugado interativa de cédigo. O resultado de cada linha
digitada é exibido imediatamente abaixo do comando, sem que precisemos utilizar a fungdo print ().
Dessa forma, é possivel testar seu codigo e inspecionar valores de forma dinamica.

De forma geral, nada do que é escrito no console fica salvo no seu computador. Por isso, é importante
salvar as linhas de interesse em algum script, para ndo perdé-las ao fechar o console. E possivel acessar
o historico de comandos de um console com a tecla de “seta pra cima” do seu teclado, mas esta ndo

é uma forma segura de armazenar codigo.

Dentro do Mu, podemos abrir/fechar o console através do botdo REPL. Esta sigla vem do inglés
read-evaluate-print loop, ou “loop de leitura-avaliacao-exibicdo”, o que descreve bem o
comportamento de um console.

P+ &) &))@ (MW (@ Q)G () =)(2)(O
Modo Novo Abrir Salvar Executar Depurar REPL Grafico | Aumentar Diminuir Tema Verificar Organizar Ajuda Sair
script.py X
1 print('Bem-vindos ao curso de Python!')
2
3 print('Vocé estad aprendendo Python na Asimov Academy!')
4
REPL Python3 (Jupyter)
Jupyter QtConsole 4.7.7 &

Python 3.8.13 (default, Jun 27 2022, 04:11:17)
Type 'copyright', 'credits' or 'license' for more information

IPython 8.6.0 -- An enhanced Interactive Python. Type '?' for help. ConSOIe
In [1]: 2 + 3
Out[1]: 5 (RI'I‘I L)

In [2]: "Hello" + "World"

Out[2]: 'HelloWorld'
In [3]: |

v

Python 3 Q

Qual utilizar?

Programadores experientes sao proficientes no uso tanto de scripts quanto do console. Utilize o
console para testar ideias e inspecionar valores. Em seguida, passe o codigo para um script organizado,
de forma a salva-lo no seu computador.

Nessa apostila, usaremos a seguinte notagio para denotar um codigo a ser desenvolvido em um
script, ou digitado em um console:

Asimov Academy 12

Aprendendo Python: Conceitos Basicos

Codigo em script

Scripts serdo indicados por diversos comandos um abaixo do outro, formando um script completo.

print('0la Mundo!"')
print('Vou aprender Python!")

Cédigo no console

Exemplos de cédigo que devem ser reproduzidos no console aparecem com os caracteres de pre-
fixo >>> (este é o prompt padrdo de um console de Python). O output esperado aparece na linha
diretamente abaixo:

>>> 2 + 3
5

>>> 'Hello' + 'World'

Lembre-se de ndo incluir o prompt >>> na hora de rodar o comando no seu console!

Depurador (debugger)

Um script de Python executa sempre linha a linha. Se usarmos o depurador do Mu (mais conhecido
pela palavra em inglés debugger), veremos a execucdo de cada linha. Modifique o codigo para o codigo
abaixo e clique em Depurar:

print('Hello World!")

print("Este é o meu primeiro script")
print("Estou aprendendo Python!")

No modo de depuragao, a linha em laranja representa a proxima linha a ser executada. Se clicarmos
no botdo Avancar (destaque em vermelho na imagem abaixo), a linha em laranja é executada. Se a
linha possuir uma chamada para a fungdo print (), entdo o texto é exibido najanela de output. O
codigo segue entdo para a proxima linha. Este processo se repete até que o coédigo chegue ao fim.

Asimov Academy 13

Aprendendo Python: Conceitos Basicos

F+)2a) 2 xplEl= = (@@« (=) (o
Modo Novo Abrir Salvar Parar Continuarl Avancar § Para dentro Parafora Aumentar Diminuir Tema Verificar Organizar Ajuda Sair
hello_world.py % ‘Avanca para a linha de codigo seguinte. Inspetor de depuracdo

1 print('Hello World!') Nome _ Valor

2 print("Este é o meu primeiro script") __fi.. '/home/jul..

3 print("Estou aprendendo Python!") __na. '_main__

Proxima linha a

ser executada Inspetor do
debugger

Output do
debugger .

]

O debugger possui esse nome justamente porque permite passarmos pelo cédigo linha a linha. Isso

Depurador visual £

nos ajuda a encontrar e solucionar erros (bugs) do nosso programa!

O debugger também possui uma janela chamada inspetor, que nos permite acompanhar o valor de
variadveis durante a execugdo do programa. Vamos falar mais de variaveis mais pra frente!

Resumo
« Codigo dentro de um script fica salvo no seu computador, podendo ser executado novamente
no futuro.
« O console é usado para testar ideias e trechos de codigo.

« O debugger é usado para acompanhar a execucdo do codigo e detectar erros.

Asimov Academy 14

Aprendendo Python: Conceitos Basicos

04. Nimeros em Python: int e float

Existem dois tipos de dados numéricos em Python: int e float.

int

Um 1int representa um ndmero inteiro, como 1,50 e -2.

>>> 1 + 2
3

float

Um float representa um nimero inteiro,como 1.5,50.25,0u -2. 86.

>>> 1.5 + 3.4
4.9

A fungao type

Afuncdo type retorna o tipo de dado do objeto que é passado para ela.

Podemos conferir o tipo de dado de nimeros dessa forma:

>>> type(1l.5)
float

>>> type(1)
int

>>> type(1.0)
float

Note que, ao escrevermos 1.0, representa um float, por mais que matematicamente seu valor seja
“inteiro”.

Matematica basica com Python

Podemos usar tanto ints quanto floats para fazer opera¢ées matematicas:

>>> 2 + 2.5
4.5

>>> 5 - 2.5

Asimov Academy 15

Aprendendo Python: Conceitos Basicos

>>> 5 % 3
15

>>> 30 / 3
10.0

>>> 3 kx 2

Note que é possivel misturar ints e floats sem nenhum problema.

Regras basicas de matematica

A ordem de operagdo é dada pelas regras basicas de aritmética. Se quisermos priorizar alguma
operacdo, por exemplo, temos que usar parénteses:

>>> 2 x 4 + 6
14

>>> 2 x (4 + 6)
20

Além disso, as regras basicas da matematica continuam sendo verdadeiras. Por exemplo, é impossivel
dividir algum nimero por zero:

>>> 5 /0
ZeroDivisionError: division by zero

Neste caso, o Python gerou um erro com a mensagem ZeroDivisionError: division by
zero. O erro esta evidente: ndo é possivel dividir nmeros por zero!

Resumo

« Dois tipos de dados numéricos: int (inteiros) e float (nimeros “quebrados”).
+ Funcdo type () inspeciona o tipo de dado de um valor qualquer.

« Opera¢bes matematicas com int e float:

Operagao Sintaxe
Soma a+b
Subtracao a-b

Asimov Academy 16

Aprendendo Python: Conceitos Basicos

Operagao
Multiplicacao
Divisao

Exponencia¢do

Sintaxe

a *xb
a/ b

a *x b

Asimov Academy

17

Aprendendo Python: Conceitos Basicos

05. Texto em Python: str

Texto em Python é representado pelo tipo de dado string (comumente abreviado para as letras str).

» o«

O nome representa a ideia de um “fio”, “corda” ou sequéncia de caracteres que representam conjunta-
mente um bloco de texto.

Para criar um string, precisamos usar aspas simples ('abc ') ou duplas ("abc"). Ndo ha diferenca
entre as formas, mas é preciso lembrar de abrir e fechar o string com o mesmo caractere:

>>> "Ola Mundo!"

>>> 'Estou aprendendo Python. Python é uma linguagem de programacéo.'

Texto e numeros

Um string sempre representa texto, ainda que contenha apenas niimeros. Sendo assim, é impossivel
somarum str eum int, por exemplo:

>>> '50' + 50
TypeError: can only concatenate str (not "int") to str

Para realizarmos a operacdo acima, é preciso converter o texto em um ndmero, usando a funcgdo
int() ou float():

>>> dnt('50') + 50
100

>>> float('50') + 50
100.0

Da mesma forma, se quisermos converter um valor numérico em texto, podemos usar a fungdo
str():

>>> str(50)

>>> str(2.5)

Operagoes com strings

Apesar de representarem texto, strings aceitam alguns operadores. Para concatenar texto (isto é, “colar”
strings diferentes um atras do outro), usamos o operador de soma (+):

Asimov Academy 18

Aprendendo Python: Conceitos Basicos

>>> "Hello" + " " + "world"

>>> "gE" + "1Q"

Alguns detalhes:

« O Note que foi necessario adicionar um caractere de espago em branco entre as palavras
"Hello" e "World" para que elas ndo aparecessem grudadas no texto final. Espago em
branco também é um caractere como qualquer outro!

« Strings numéricos ndo sdo somados, mas sim concatenados (mais uma vez: para fazer a operacdo
aritmética, é necessario converter os strings para niGmeros primeiro).

Strings também aceitam outros operadores, como multiplicagdo por um inteiro para repetir a
palavra:

>>> "Python" * 4

Mas ndo aceitam todos os operadores. Por exemplo, ndo é possivel fazer uma “subtragdo” de strings:

>>> 'abc' - 'c!
TypeError: unsupported operand type(s) for -: 'str' and 'str'

E o préprio tipo de dado (str, int, float) que determina quais operadores funcionam ou ndo para
ele!

Tamanho de um string

Afuncdo len () retorna o “tamanho” de um objeto. No caso de um string, o tamanho é representado
pelo nimero de caracteres (incluindo pontuagdo e espagos em branco):

>>> len('Python')
6

>>> len('Conferido o tamanho desse string...')
35

Fungoes e tipos de dados

Algumas fungdes sé funcionam com certos tipos de dados. Por exemplo, para os criadores de Python,
nao faz sentido perguntar pelo “tamanho de um nimero”:

>>> len(3)
TypeError: object of type 'int' has no len()

Asimov Academy 19

Aprendendo Python: Conceitos Basicos

Ja outras funcGes, como print (), funcionam com virtualmente qualquer tipo de dado.

Para sabermos exatamente o que uma funcao ou objeto aceitam, podemos usar outra funcdo, help (),
para ler sua documentacao:

>>> help(print)
print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Dito isso, na pratica € muito mais comum procurarmos pela documentacdo de Python online (faga
uma busca por “Python print function documentation”, por exemplo), ou em sites contendo exemplos
praticos.

Resumo

« str: texto em Python. Sempre entre aspas simples ou duplas.

+ Aceita operagoes como “soma” de strings (concatenagdo) ou multiplicagdo por inteiro (repeticao).
Outras operacdes sdo proibidas (ex: somar string com nimero).

Funcdo len () retorna o tamanho de um objeto (niGmero de caracteres, no caso de str).

Funcdo he'lp () retorna documentagdo de um objeto ou tipo de dado.

Asimov Academy 20

Aprendendo Python: Conceitos Basicos

06. Variaveis

Em muitas partes do cddigo, sera Gtil dar nomes para valores, para facilitar o entendimento e desen-
volvimento do nosso préprio codigo. Por exemplo, se quisermos calcular a area A de um circulo, a
formula é:

A= mr?

Onde 7 é a constante pi, e r é o raio do circulo.

Se nosso circulo possuir raio 5, e aproximando pi com o valor 3. 14, podemos representar essa formula
em Python como:

print(3.14 * 5 %% 2)

Este codigo funcionara sem problemas. Contudo, ndo é facil entender exatamente o que ele faz. Mesmo

para o criador do codigo, pode ser dificil lembrar o que os nimeros representam depois de alguns dias
sem voltar a este problema.

Podemos melhorar este c6digo com o uso de variaveis. Variaveis sdo formas de darmos nomes a um
certo valor.

O codigo abaixo, por exemplo, assinala o valor 4 para dentro da variavel x e depois inspeciona a
variavel para obter seu valor:

>>> x = 4
>>> X
X

Reescrevendo o exemplo do circulo com variaveis, temos:

pi = 3.14
raio = 5
raio_ao_quadrado = raio xx 2

print(pi * raio_ao_quadrado)

Aintenc¢do do cddigo fica muito mais evidente!

Regras para nome de variaveis

Apenas letras, nimeros e underscore:

>>> X = 4
>>> meu_nome = "Juliano"
>>> meu nome = "Juliano"

SyntaxError: dnvalid syntax

Asimov Academy 21

Aprendendo Python: Conceitos Basicos

Python difere letras mailsculas, mindsculas e acentos:

>>> a =5

>>> a
5

>>> A
NameError: name 'A' 1is not defined

>>> 4
NameError: name 'a' s not defined

N&do pode comecgar com niimero:

>>> varl = 10
>>> 1lvar = 10
SyntaxError: invalid syntax

Nao pode ser uma palavra com significado especial em Python, como if e for:

>>> if = 2
SyntaxError: invalid syntax

Cuidado: sobrescrevendo nomes ja existentes

Se uma variavel for redefinida, apenas o ultimo valor é mantido em meméoria:

>>> X = 2
>>> x = 10
>>> X

10

”»

Cuidado: se uma variavel sobrescrever uma fungdo do Python, como print (), afuncdo esta “perdida
até o final da execugdo do codigo:

print("0la, mundo!'")
print = 2

print("0la, mundo!")

TypeError: 'int' object is not callable

Se isso acontecer, é s rodar o script novamente - as variaveis sdo sempre zeradas quando o script
reinicia.

Por outro lado, se eu quiser que alguma variavel persista entre execucGes diferentes, entdo vou precisar
de algum arquivo no qual escrevé-la. Pode ser um arquivo de texto simples (. txt), um arquivo Excel,
um banco de dados, ndo importa: precisa ficar registrado em algum lugar! Este curso ndo se aprofunda
na escrita de arquivos, mas é importante saber que esta é a forma de “salvar” uma variavel fora do
codigo.

Asimov Academy 22

Aprendendo Python: Conceitos Basicos

Resumo

« Definir variaveis com operador = (exemplo: var = 5).

« Regras para nome de variaveis:

1. Apenas letras, nimeros e underscore
2. Nado pode comecar com niimeros
3. Nao pode ser palavra reservada do Python

« Cuidado para ndo sobrescrever outras variaveis ou funcgées!

Asimov Academy

23

Aprendendo Python: Conceitos Basicos

07. Inserindo e formatando texto

A fungao input()

Afuncgdo input () é usada para pegar valores inseridos pelo usuario.

Ela ndo precisa de nenhum argumento, mas ainda precisamos abrir e fechar os parénteses para
simbolizar que queremos executa-la:

X = dinput()
print(x)

Na realidade, a funcao input () tem um argumento opcional. Ele representa um prompt explicativo,
que fica imediatamente antes da posigdo onde o usuario insere o texto:

nome = input("Digite seu nome: ")
print(nome)

Note que o valor sempre é retornado como um string. Entdo se quisermos trabalhar com nimeros, é
preciso converter o tipo de dado:

num = input('Digite um nlmero: ")
resultado = int(num) + 10

print(resultado)

Inserindo varidveis no texto com f-strings

Os f-strings sdo strings que facilitam a inser¢do de variaveis no texto.

Um string qualquer pode se tornar um f-string apenas adicionando o caractere f imediatamente antes
do seu comeco (a esquerda das aspas). As variaveis sdo passadas diretamente dentro de chaves { }
no meio do string.

Exemplo comparando uso de f-strings:
nome = input('Qual o seu nome? ')
idade = dinput('Qual a sua idade? ')

n_letras = len(nome)
n_letras_str = str(n_letras)

idade_futuro = 1dint(idade) + 5
idade_futuro_str = str(idade_futuro)

print('0Ola, ' + nome + '!'")
print('Seu nome tem ' + n_letras_str + ' letras.')
print('Daqui 5 anos, vocé tera ' + idade_futuro_str + ' anos.')

Asimov Academy 24

Aprendendo Python: Conceitos Basicos

nome = input('Qual o seu nome? ')
idade = dinput('Qual a sua idade? ")

print(f'ola, {nome}!')

print(f'Seu nome tem {len(nome)} letras.')
print(f'Daqui 5 anos, vocé tera {int(idade) + 5} anos.')

Como visto acima, quando usamos f-strings podemos passar até mesmo niimeros ou outros tipos de
dado dentro das chaves, que a convers3o para string é feita automaticamente. E até possivel realizar
operacdes simples, como chamar a fungdo len (), diretamente de um f-string!

Quebras de linha

Uma quebra de linha (também chamada de caractere nova linha em Python) é representado em
Python pelo caractere \n. Ao ser printado, o caractere ndo é exibido em tela, e no seu lugar surge uma
quebra de linha:

s = '"Primeira linha\nSegunda linha\nTerceira linha'
print(s)

O output do cddigo acima é:

Primeira 1linha
Segunda linha
Terceira linha

Strings brutos

A sequéncia \ n representa uma sequéncia de controle, isto €, uma combinacdo especial de caracteres
com funcionalidade especifica dentro de um string.

Se quisermos ignorar todas as sequéncias de controle de um string, e escrever literalmente os carac-
teres \ e n um seguidos do outro, podemos usar um string bruto. De forma similar a um f-string, um
string bruto é identificado pelo prefixo r (do inglés raw):

s = r'Primeira linha\nSegunda linha\nTerceira linha'
print(s)

Neste caso, o output é:

Primeira linha\nSegunda linha\nTerceira linha

Asimov Academy 25

Aprendendo Python: Conceitos Basicos

Resumo

« Funcdo input("prompt opcional") para pegar valordo usuario (sempre lido como um
str).

« f-strings ajudam a inserir variaveis no texto. Exemplo:

nome = 'Juliano'
print(f'Ola, {nome}!"')

+ Quebra de linha representado pelo caractere especial "\ n". Usar string bruto (com prefixo r)
para ignorar caracteres especiais.

Asimov Academy 26

Aprendendo Python: Conceitos Basicos

08. Controle de fluxo e operadores

Controle de fluxo na vida real

No nosso dia a dia, ha diversos momentos em que nos deparamos com uma estrutura de controle de
fluxo:

+ Seisso for verdadeiro, entdo faco aquilo.
« Caso contrario, fago essa outra coisa.

Exemplo: algoritmo para decidir se eu devo comer uma comida:

Tenho
= Sim = comida em == Nao=—p Ir ao mercado

Estou com
fome?

INiClo

casa’

Preparar uma

FIM A— Comer a Camida A— .
refeicao

Voltar para casa

Essa estrutura pode ser representada através de cddigo Python!

Controle de fluxo em Python: i f e else

0 Python utiliza as palavras i f e else para controle de fluxo, junto de algum tipo de comparador:

idade = int(input('Digite sua idade: "))

if idade < 18:
print('Vocé é menor de +idade')
print('Vocé ndo pode dirigir um carro')
else:
print('Vocé é maior de idade')

0 codigo ira exibir valores diferentes, de acordo com a resposta que o usuario passar no input()!

+ O bloco i f executa apenas se a condicao for verdadeira. Neste exemplo, isso significa ter
menos de 18 anos.

+ Obloco else executa apenas se as condi¢oes anteriores forem falsas. Neste exemplo, isso
significa ter 18 anos ou mais. Podemos pensar no else como um “caso contrario”: se nada for
verdadeiro, entdo o codigo no else é executado.

Asimov Academy 27

Aprendendo Python: Conceitos Basicos

Sintaxe de controle de fluxo

Note que ha uma sintaxe especifica nestes blocos de i f e else:

+ Uso de dois pontos (:) depois da comparacao if idade < 18.

« 0O bloco imediatamente abaixo da comparagdo possui indentagao, isto é, espaco em branco a
esquerda. Isto ndo é meramente uma questdo de “estilo” de cdigo. A indentagdo é essencial
em Python, pois indica onde comeca e termina o bloco de cédigo dentro da condicional.

« O tamanho padrdo da indentacdo é de 4 espagos, mas Python aceita outros valores, desde que
seja consistente.

+ O bloco termina quando a indentagao retorna ao valor original.

A palavra-chave elif

Para testar mais de duas condicOes, podemos usar e11 f (que é uma combinacdo de else e if):
idade = int(input('Digite sua idade: '))

if idade < 18:

print('Vocé tem menos de 18 anos.')
elif idade == 18:

print('Vocé tem exatamente 18 anos!')
else:

print('Vocé tem mais de 18 anos.')

Se 0 if ndo passar, o codigo testa o el f. Se o elif também ndo passar, entdo o codigo testa o
else.

Posso incluir mais de um el f. Na realidade posso incluir quantos e'li f eu quiser, de acordo com o
que fizer sentido!

Operadores de comparagao

Sado usados nas comparacoes dos blocos i f e elif. Retornam sempre um valor True ou False
(verdadeiro ou falso, respectivamente).

Note que True/False sdo valores proprios em Python, e pertencem ao um tipo de dado especifico
(booleano). Sdo escritos com letra inicial maitscula.

Ja utilizamos dois operadores de comparacdo até aqui: menor que(<) eigual a(==). Aqui esta a lista
completa de comparadores:

 lguala: ==
+ Diferentede: ! =

Asimov Academy 28

Aprendendo Python: Conceitos Basicos

« Maior que: >

Menor que: <

+ Maiorouiguala: >=

+ Menorouigual a: <=
E alguns exemplos praticos:

>>> 4 == 4.0 # Igual a

True

>>> 4 1= "4" # Diferente de
True

>>> 5 > 10 # Maior que

False

>>> 5 < 10 # Menor que

True

>>> 10 >= 10 # Maior ou igual a
True

>>> 11 <= 10 # Menor ou 1igual a
False

Operadores booleanos

Usados para combinar 2 valores True/False de formas especificas:

+ Operador and: retorna True apenas se ambos os valores forem True
« Operador or: retorna True apenas se pelo menos um dos valores for True
« Operador not: inverte o valor (True vira False, Falsevira True)

Exemplos:

>>> True and True
True

>>> True and False
False

>>> True or True
True

>>> True or False
True

>>> False or False
False

Asimov Academy

Aprendendo Python: Conceitos Basicos

>>> not True
False

>>> not False
True

Recriando o controle de fluxo da imagem

Usando operadores de comparacao:

print('--- INICIO ---")

respostal = input('Estou com fome? (Digite s para sim)')
if respostal == 's':

resposta2 = input('Tenho comida em casa? (Digite s para sim)')
if resposta2 != 's':

print('Ir ao mercado')
print('Voltar para casa')

print('Preparar uma refeicao')
print('Comer a comida')

print('--- FIM ---")

Usando operadores booleanos:

print('--- INICIO ---')
estou_com_fome = input('Estou com fome? (Digite s para sim)') == 's'
tenho_comida = dinput('Tenho comida em casa? (Digite s para sim)') == 's'

if estou_com_fome and not tenho_comida:
print('Ir ao mercado')
print('Voltar para casa')

if estou_com_fome:
print('Preparar uma refeicao')

print('Comer a comida')

print('--- FIM ---")

Resumo

« Estrutura de controle de fluxo:

if condicao_01:
Codigo que roda quando condicdo 01 € verdadeira

Asimov Academy

30

Aprendendo Python: Conceitos Basicos

elif condicao_02:

elif condicao_03:

else:

+ Operadores de comparacao

Tipo de comparagao Operador

Igual a a==>b
Diferente de al=b
Maior que a>b
Maior ou igual a a>=b
Menor que a<hb
Menor ou igual a a<=b

« Operadores booleanos

Operador Descrigdo

a and b TrueseambosaebforemTrue
aorb True se um valordentre aou b for True

not a Inverte o valor de a (True vira False e vice-versa)

Asimov Academy

31

Aprendendo Python: Conceitos Basicos

09. Listas e tuplas

Listas

Listas sdo um tipo de dado diferente dos que ja vimos até aqui. Elas sdo sequéncias ordenadas de
elementos, sendo que seus elementos podem ser de qualquer tipo (str, int, float, bool, até
mesmo outras listas).

Listas sdo definidas com colchetes [] e seus elementos sdo separados uns dos outros com virgulas
5

Exemplos de listas:

minha_lista = [1, 2, 3]

outra_lista = ['hello', 'ola', 'bom dia']

lista_misturada = [0, 1.1, 'PYTHON', True, [1, 2]]

Conseguimos usar listas para representar dados da vida real:

alunos = ['Ana', 'Bruno', 'Carlos']
vendas_por_dia = [50, 30, 35, 48, 70, 45, 50]

Indexagao

Podemos utilizar indices entre colchetes para pegar os elementos da lista. Importante: em Python, a
indexacao comeca sempre de zero!

>>> lista_misturada = [0, 1.1, 'PYTHON', True, [1, 2]]
>>> Tlista_misturadal[0]
0

>>> Tlista_misturada[l]
1.1

>>> Tlista_misturada[2]

Uma consequéncia da indexacdo comecar em 0 é que o Ultimo elemento estd no indice
len(lista_misturada)-1:

>>> Tlista_misturada[len(lista_misturada)-1]
[1, 2]

Para ndo termos que escrever isso toda vez, Python permite que usemos indices negativos para pegar
elementos de tras pra frente:

Asimov Academy 32

Aprendendo Python: Conceitos Basicos

>>> lista_misturadal[-1]
[1, 2]

>>> Tlista_misturadal[-2]
True

Se um elemento da lista for ele mesmo outra lista, podemos usar indices encadeados:

>>> Tlista_misturadal[-1]
[1, 2]

>>> lista_misturada[-1][0]
1

>>> Tlista_misturada[-1][1]
2

Elementos fora do alcance do indice geram um IndexError:

>>> lista_misturadal[1000]
IndexError: list index out of range

>>> Tlista_misturada[-1000]
IndexError: list index out of range

Modificando listas

Listas sdo um tipo especial de dado em Python, porque podem ser modificadas diretamente:

>>> alunos = ['Ana', 'Bruno', 'Carlos']

>>> alunos[0] = 'Marcos'
>>> alunos[1] 0.0
>>> alunos[2] = ["XXX', 'YYY']

>>> alunos
['Marcos', 0.0, ['XXX', 'YYY']]

Podemos também usar a palavra especial del para remover algum elemento da lista, a partir do seu
indice:

>>> alunos = ['Ana', 'Bruno', 'Carlos']
>>> del alunos[0]

>>> alunos
['Bruno', 'Carlos']

Isso € diferente de todos os dados com que ja trabalhamos até agora! Com dados imutaveis, temos
certeza que a variavel sempre se refere ao mesmo valor (a ndo ser que ela seja redefinida). Ja com
dados mutaveis como listas, o seu contetido pode ser modificado dinamicamente.

Asimov Academy 33

Aprendendo Python: Conceitos Basicos

Mais pra frente, quando falarmos de métodos de listas, vamos voltar a outras formas mais eficazes de
modifica-las.

Tuplas

Tuplas sdo muito parecidas com listas, mas com as seguintes diferencas:

+ Sdo escritas com parénteses () no lugar dos colchetes.
« S3o imutaveis.

Acompanhe o exemplo:
>>> alunos = ('Ana', 'Bruno', 'Carlos')

>>> alunos[0] = 'Marcos'
TypeError: 'tuple' object does not support item assignment

Vocé pode se perguntar: qual o sentido de uma estrutura imutavel, se temos as listas?

« Um objeto ndo mutavel esta “protegido” de programadores inadvertidos que tentam modificar
algum valor crucial no programa.

« Elaindica a quem ler o cddigo que aqueles valores sdo constantes.

« Pode ser usado pra representar alguma estrutura, como por exemplo uma tupla de 3 elementos:
nome, endereco, CPF.

Em termos praticos, e especialmente nos codigos simples com que iremos trabalhar aqui no curso, as
listas nos bastam. Mas é importante saber que as tuplas existem!

Resumo

« Listas sdo sequéncias com elementos de qualquer tipo.

+ Acesso, modifico e deleto um elemento da lista com seu indice:
14 = [1, 2, 3]
primeiro_elemento = 1i[0]

1i[1] = 100
del 1i[2]

« Indice negativo = pegar elementos a partir do final da lista.

« Tuplas sdo como listas, mas ndo podem ser modificadas (objeto imutavel).

Asimov Academy 34

Aprendendo Python: Conceitos Basicos

10. Sequéncias e slicing

Sequéncias

Listas e tuplas permitem indexagdo porque sdo sequéncias. Strings também funcionam como sequén-
cias (imutaveis), e possuem as mesmas regras de indexacdo:

>>> nome = "Juliano"

>>> nome[0]

>>> nome[-1]

Sequéncias em Python podem ser vazias - nesse caso, possuem tamanho zero e qualquer indexagao
resultara em erro:
>>> g = "'

>>> len(s)
0

>>> s[0]
IndexError: string index out of range

>>> 1 = []
>>> len(1d)

0

>>> 19[0]

IndexError: list index out of range

>>> tup = ()
>>> len(tup)

(0]

>>> tup[0]

IndexError: tuple index out of range

Sequéncias verdadeiras e falsas

O que significa uma sequéncia ser “falsa” ou “verdadeira”? Em Python, isso é equivalente a ela estar
vazia ou ndo. Se ela tiver algum elemento, ela sera considerada verdadeira (ainda que os elementos
em si sejam “falsos”).

Podemos checar esse comportamento passando uma sequéncia a fungédo bool.

>>> bool(str())
False

>>> bool (' ")

Asimov Academy 35

Aprendendo Python: Conceitos Basicos

True

>>> bool('0la!")
True

>>> bool(list())
False

>>> bool([0, 0, 0])
True

>>> bool(tuple())
False

>>> bool((1, 2, 3))
True

Em geral, qualquer tipo de dado pode ser considerado True ou False. As regras dependem do tipo
de dado:

« Strings vazios sdo Fa'lse, qualquer outro string é True
« Listas e tuplas vazias sdo Fa'lse, qualquer outra lista ou tupla é True
« NUmero zero (sejaum int ou float) sdo False, qualquer outro nimero é True

Aforma tradicional de testar se uma sequéncia seq esta vazia ou ndo é simplesmente usar a construcdo
if seq:
seq = []
if seq:
print('Sequéncia ndo é vazia')

else:
print('Sequéncia é vazia')

Note que o cddigo acima funcionaria para qualquer sequéncia!

Em outras linguagens de programagao, que ndo aceitam a construgdo acima, precisariamos checar
se o tamanho da sequéncia é zero com uma funcdo equivalente a len()). Python permite essa
expressividade concisa!

Slices

Além de indices Gnicos, podemos passar slices a uma sequéncia para obter uma “fatia” dos seus
elementos:

>>> pessoas = ['Joao', 'Paulo', 'Clara', 'Maria']

>>> pessoas[1]

Asimov Academy 36

Aprendendo Python: Conceitos Basicos

"Paulo’

>>> pessoas[1:3]
['Paulo', 'Clara']

>>> pessoas[3:4]
["Maria']

Nestes exemplos, os valores 1:3 e 3:4 sdo os slices.
Notas sobre os slices:
« Incluem o elemento no primeiro indice.

« Pegam todos os elementos até o elemento no segundo indice, sem inclui-lo.
« Retornam uma nova lista, mesmo se ela possuir apenas 1 elemento.

Esse comportamento pode parecer confuso, mas dessa forma, significa que se formos do indice zero

até o tamanho da sequéncia, pegamos todos seus elementos:

>>> pessoas[0:4]
['Jodo', 'Paulo', 'Clara', 'Maria']

>>> pessoas[0:len(pessoas)]
['Jodo', 'Paulo', 'Clara', 'Maria'l]
Na realidade, é tdo comum comecar de zero e ir até o final, que Python nos permite omitir esse

valores:

>>> pessoas[:2] # Do primeiro até o elemento de indice 2
['Jodo', 'Paulo']

>>> pessoas[:-1] # Excluir o ultimo elemento apenas
['Jodo', 'Paulo', 'Clara']

>>> pessoas[2:] # Do elemento de indice 2 até o final
['Clara', 'Maria']

>>> pessoas[1l:] # Excluir o primeiro elemento apenas
['Paulo', 'Clara', 'Maria']

Usamos listas nestes exemplos, mas note que tudo isso funciona para qualquer outra sequéncia, como

strings:

>>> nome = "Juliano"

>>> nome[l:] # Exclui a primeira letra
'uliano'’

>>> nomel[:-1] # Exclui a ultima letra
'Julian’

>>> nome[2:5] # "lia"

"lia’

Asimov Academy 37

Aprendendo Python: Conceitos Basicos

0 valor de pulo no slice

Por fim, podemos passar um terceiro valor a um slice, que corresponde ao pulo.

Por padrdo, esse valor é 1. Mas se quisermos pegar um elementos a cada dois ou trés elementos,
podemos modifica-lo:

>>> numeros = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> numeros[0:1len(numeros):2]
[1, 3, 5, 7, 9]

>>> numeros[::2]
[1, 3, 5, 7, 9]

>>> numeros[l:len(numeros):2]
[2’ 4’ 6’ 8]

>>> numeros[l::2]
[2’ 4’ 6’ 8]

O pulo também aceita valores negativos. Neste caso, os valores sdo percorridos de tras pra frente!
>>> numeros = [1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> numeros[::-1]
[9) 8) 7) 67 5’ 4’ 3) 2’ l:l

O importante aqui ndo é decorar todas essas regrinhas de slicing, mas saber que existem toda essa
funcionalidade em qualquer sequéncia de Python. Assim, na hora em que vocés se depararem com
um problema pratico, vocés lembrardo que isso existe, e irdo atras da solugao!

Resumo

Strings também sdo sequéncias. Sequéncia “falsa” = sequéncia vazia.

Slicing retorna “fatia” de sequéncia, com sintaxe[inicio: fim:pulo].

O slicing inclui elemento no indice inicio e exclui o elemento no indice fim.

Por padrdo, inicio vale 0 e fiméigual ao tamanho da sequéncia.

pulo controla de quantos em quantos elementos pegar. O valor padrdo é 1.

Asimov Academy 38

Aprendendo Python: Conceitos Basicos

11. Funcao range e for loops

A funcao range

Afungdo range () cria uma sequéncia de nimeros em memoria:

>>> range(10)
range(0, 10)

Mas para ver a sequéncia, € preciso usar a fungdo list () ou tuple (). Isso porque ela ndo carrega
os nimeros em memoria, apenas os deixa preparados para serem percorridos:

>>> list(range(10))
[Oi l’ 27 37 41 51 67 7, 87 9]

>>> tuple(range(20))
(6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

Na realidade, um range ndo é uma lista ou tupla, mas um objeto préprio em Python:

>>> type(range(10))
range

Funcao range vs slicing

Note que o ultimo elemento ndo apareceu nas sequéncias acima.

Na realidade, a fun¢do range () aceita argumentos analogos ao slicing que fizemos anteriormente:
>>> numeros = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> numeros[1:5]

[1, 2, 3, 4]

>>> list(range(l, 5))
[1, 2, 3, 4]

>>> numeros[0:10:2]

[0, 2, 4, 6, 8]

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

>>> numeros[10:0:-1]

[lo’ 9’ 8’ 7) 61 5’ 4, 3) 27 l]
>>> list(range(10, 0, -1))

[107 9) 8’ 77 6’ 5’ 4) 3’ 2) 1]

As diferencas sdo apenas a sintaxe (dois pontos no slicing :, virgulas no range ,) e o fato de que para
usar o slicing, a lista precisa estar previamente definida.

Asimov Academy 39

Aprendendo Python: Conceitos Basicos

Parametros de um range: Start, stop, step

Dependendo do nimero de argumentos do range, os valores padrdo mudam:

« 1 ndmero = stop (comeca de zero e pulade 1 em 1)
« 2 ndmeros = start, stop (pulade 1 em 1)
« 3 nlmeros = start, stop, step

Os exemplos abaixo sao equivalentes:

>>> list(range(10))
[O’ l’ 2, 3) 47 5’ 6’ 7’ 8 79]

>>> list(range(0, 10))
[O’ l’ 2’ 3) 47 5’ 6, 7’ 8 79]

>>> list(range(0, 10, 1))
[O’ l’ 2’ 3) 4’ 5’ 6’ 7’ 8 19]

E muito comum usarmos range para definirmos uma lista grande de valores de uma sé vez!

>>> list(range(l, 1001))
[1, 2, 3, ..., 999, 1000]

>>> list(range(0, 301, 2))
[0, 2, 4, ..., 298, 300]

For loops

Em muitos momentos em programacao, vamos querer repetir uma acao N vezes. Podemos fazer isso
com um for loop.

Para criarmos um for loop, usamos a mesma estrutura que ja aprendemos para condicionais, mas
utilizamos a palavra-chave for:

for n in range(10):
print(f'0 valor de n é: {n}")

print('0O loop acabou')

Esse codigo exibe amensagemO valor de n é: 0,0 valor de n é: 1,eassim pordiante,
até percorrer todos os valores do range () !

Note que a variavel n ndo precisou ser definida antes do loop! Ela é criada automaticamente pelo for
loop, e representa cada elemento da sequéncia sendo iterada. Posso chama-la do que quiser.

Sugiro acompanhar a iteracdo pelo debugger, para ver como a variavel n altera seu valor a cada
iteracao.

Asimov Academy 40

Aprendendo Python: Conceitos Basicos

Repetindo a¢bes multiplas vezes

Podemos usar um for loop para repetir agées um certo nimero de vezes. Neste exemplo, a mensagem
014! éexibida 3 vezes:

for n in range(3):
print('0olal")

print('0O loop acabou')

Note que, neste caso especificos, nem utilizamos a variavel n. Ela corresponde ao nimero gerado pelo
range (), mas em alguns casos esse niimero nao é necessario pra nada.

Se a variavel ndo for usada para nada, existe a convencao de nomea-la como _:

for _ 1in range(3):
print('0olat")

print('0 loop acabou')

Resumo
« Funcdo range(inicio, fim, pulo) prepara uma sequéncia de nimeros. E preciso
entrega-la para uma lista ou percorré-la com um for loop para pegar seus nimeros.
« For loop pode ser usado com range (n) para repetir uma agao n vezes.

« Sintaxe de um for loop:

for numero in range(n):

Asimov Academy 41

Aprendendo Python: Conceitos Basicos

12. Iterando sobre sequéncias

Vimos como iterar sobre os nimeros de um range usando um for loop. Na realidade, podemos iterar
sobre qualquer sequéncia de Python!

Ao usar um for loop com uma lista, itero sobre seus valores:

valores = [10, 20, 30]
for valor 1in valores:
print(f'0 valor é: {valor}')

Ao usar um for loop com um string, itero sobre seus caracteres:

nome = "Juliano"
for caractere in nome:
print(f"0 caractere é: {caractere}")

Posso até iterar sobre estruturas mais complexas, como listas de tuplas!

clientes = [('Ana', 'xxx', 'xxx@gmail.com'), ('Eduardo', 'yyy', 'yyy@gmail.com')]
for cliente in clientes:

nome = cliente[0]

cpf = cliente[1]

email = cliente[2]
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---")

Este tipo de iteragdo funciona com qualquer tipo de dado que seja uma sequéncia.

Lembre-se de dar um nome 0til para a variavel do for loop!

Formatando sequéncias

Valores dentro de listas (ou qualquer outra estrutura) podem ser reformatados com espago em branco,
sem que isso cause um erro no Python. Isso nos ajuda a ler e editar codigo de forma mais clara:
clientes = [

('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

Desempacotamento de sequéncias

Se sei 0 tamanho de uma sequéncia, posso “desempacota-la” em variaveis em uma Unica linha.
Tomando como exemplo o cédigo dos clientes:

Asimov Academy 42

Aprendendo Python: Conceitos Basicos

clientes = [
('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

for cliente 1in clientes:
nome, cpf, email = cliente
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---")

Isso é chamado de desempacotamento de sequéncias, e posso usar com qualquer tipo de sequén-
cia:
>>> x, y = (10, 20)

>>> X
10

>>> y
20

>>> letral, letra2, letra3 = 'ABC'

>>>letral
VAV

>>> letra2
VBV

>>> Tletra3

VCV

O Unico detalhe é que preciso saber o nimero de elementos de anteméo, pois ndo podem sobrar/faltar
variaveis:

>>> x, y, z = (10, 20)
ValueError: not enough values to unpack (expected 3, got 2)

Posso até mesmo desempacotar uma sequéncia na chamada do for loop!

clientes = [
('Ana', 'xxx', 'xxx@gmail.com'),
('Eduardo', 'yyy', 'yyy@gmail.com'),

for nome, cpf, email in clientes:
print(f'cliente: {nome}\nCPF: {cpf}\nemail: {email}\n---")

Este também é um exemplo de aplicagdo de tuplas - como elas sdo imutaveis, sei que sempre terdo 3
elementos dentro delas.

Asimov Academy 43

Aprendendo Python: Conceitos Basicos

Resumo

Posso usar for loops com qualquer sequéncia.

Posso adicionar espaco em branco e novas linhas dentro de listas e tuplas, de modo a formatar
melhor o seu conteldo.

Desempacotamento de sequéncias = desmembrar cada elemento de uma sequéncia em uma
variavel:

X, ¥, z = (10, 20, 30)
print(x)

print(y)
print(z)

Asimov Academy 44

Aprendendo Python: Conceitos Basicos

13. While Loops, break e continue

While loops

Um while loop é utilizado para repetir uma agao até que uma condigdo deixe de ser verdadeira. Sua
sintaxe é muito parecida com um for loop, mas precisamos de uma condi¢ao de parada que impeca
nosso codigo de executar infinitamente!

Exemplo:
n =20
while n < 3:
print(f'0 valor de n é: {n}")
n=n=+1
print('0O loop acabou')
Neste codigo, alinhan = n + 1 serve de condi¢do de parada. Como o valor de n esta sempre sendo
incrementado, eventualmente a condicdo n < 3 deixara de ser verdadeira (neste caso, no momento

em que n vale 3). Quando isso acontecer, o loop terminara e o codigo seguira para os comandos abaixo
dele.

Loop infinito

Se retirarmos a condicdo de parada, entdo o codigo ndo para de executar nunca!
n =20

while n < 3:
print(f'0 valor de n é: {n}'")

print('0O loop acabou')

Para forgar a parada do cédigo, podemos usar as combinacdo Ctrl + C(de cancelar a operagdo).
Em IDEs como o Mu, geralmente ha também algum bot3o de forcar a parada na interface.

Neste exemplo, o “codigo infinito” ndo produz nenhum problema, além de ficar emitindo a mesma
mensagem para o terminal indefinidamente. Mas se o cédigo ficasse adicionando dados em um
arquivo, ou ficasse criando listas de niimeros em memoria, poderia acabar com o espago em disco
e/ou memoria!

Asimov Academy 45

Aprendendo Python: Conceitos Basicos

Palavra-chave break

Podemos usar a palavra-chave break para forgar a saida de um loop em certo ponto do cédigo (isso
serve tanto para while loops quanto for loops). O c6digo abaixo executaria até n=9, mas com o break,
ele acaba precocemente:

n =20

while n < 10:
print(f'0 valor de n é: {n}")
n += 1
if n == 5:
break

print('0 loop acabou')

Palavra-chave continue

Podemos usar a palavra-chave continue para seguir imediatamente para a proxima iteracao do
loop, funcionando assim como um “curto circuito”.

No exemplo abaixo, iteramos sobre uma sequéncia de nimeros e para cada nimero n calculamos o
valor de 1 dividido por n. Usamos o continue para pular esta operacdo na iteracao em que n vale 0,
de forma a evitar o erro de ZeroD-ivisionError:
for n in range(-5, 6):
if n == 0:
continue

resultado = 1 / n
print(f'l dividido por {n} = {resultado:.2f}")

Uso parawhile loop: pedir por um input especifico

Um loop muito comum de ser usado com while é owhile True.Como o valor True nunca deixara
de ser verdadeiro, este loop realiza uma ac¢ao infinitamente. Contudo, ainda podemos usar a palavra-
chave break para finaliza-lo.

Esta construgdo é muito usada para rodar um programa até que o usuario decida fecha-lo. No exemplo
abaixo, o codigo finaliza apenas quando o usuario passar o valor ""q" parao input():

while True:
entrada = input('Digite qualquer coisa ("q" para sair): ')
if entrada == 'q':
break
print(f'0 valor digitado foi: {entrada}')

print('0O cédigo acabou')

Asimov Academy 46

Aprendendo Python: Conceitos Basicos

Resumo

+ Sintaxe de um while loop:

while condicao:

« Palavra-chave break: finaliza o loop atual instantaneamente.
« Palavra-chave continue: segue para a proxima iteracdo do loop instantaneamente.

« Usarloopwhile True para repetir acdo indefinidamente, até o codigo encontrar um break!

Asimov Academy 47

Aprendendo Python: Conceitos Basicos

14. Dicionarios e o operador in
Dicionarios

Dicionarios sdo um dos principais tipos de dados em Python. Com eles, podemos “mapear” ou associar
valores entre si, de acordo com alguma logica.

Se pararmos para pensar, veremos que existem muitos casos de associacao de valores na vida real:

« Cada pais esta associado a sua capital

Cada produto de um mercado esta associado ao seu preco
« Cada pessoa esta associada a uma lista dos seus animais de estimacao
Cada CPF esta associado a um nome

Todas essas associacdes podem ser representadas em Python através de dicionarios.

Sintaxe de um dicionario

Um dicionario é composto por chaves associadas a valores. Cada associagdo é chamada de um par
chave-valor.

No codigo, representamos uma associa¢do de uma chave com seu valor com dois pontos (:), e sepa-
ramos cada par chave-valor por virgulas (,). O dicionario em si é definido com chaves ({ 1}).

Exemplo:
>>> capitais = {'Brasil': 'Brasilia', 'Franga': 'Paris', 'Japdo', 'Téquio'}

>>> capitais
{'Brasil': 'Brasilia', 'Franga': 'Paris', 'Japdo', 'Téquio'}

Da mesma forma como nas listas, podemos reestruturar o dicionario em linhas para facilitar a digitagao
e compreensao:

>>> capitais = {

'Brasil': 'Brasilia',
'Franga': 'Paris',
'Japdo': 'Toquio',

}
>>> capitais
{'Brasil': 'Brasilia', 'Franga': 'Paris', 'Japdo', 'Téquio'}

Usando dicionarios

De forma semelhante a listas, usamos colchetes para pegar valores do dicionario. A diferenga é que,
ao invés de usarmos indices, usamos a chave para pegar o valor correspondente:

Asimov Academy 48

Aprendendo Python: Conceitos Basicos

>>> capitais['Brasil']
'"Brasilia’

>>> capitais['Franca']
"Paris'’

>>> capitais['Japdo']

'"Toquio'

Também de forma parecida com listas, tentar pegar uma chave que ndo esta criada no dicionario
resulta em um erro especifico (KeyError neste caso):

>>> capitais['Inglaterra']
KeyError: 'Inglaterra'

Dicionarios também s3o dados mutaveis. E possivel adicionar criar novas associa¢des de chave-valor
usando o operador = (0 mesmo que usamos pra criar variaveis):
>>> capitais['Inglaterra'] = 'Londres'
>>> capitais
{'Brasil': 'Brasilia',
'"Franga': 'Paris',
'Japéo': 'Téquio’',
'Inglaterra': 'Londres'}

>>> capitais['Inglaterra']
"Londres'

« Importante: um dicionario possui chaves linicas, ou seja, ndo pode ter chaves repetidas. Se
eu passar um novo valor para uma mesma chave, ela é sobrescrita!

>>> capitais['Inglaterra'] = '22272'
>>> capitais
{'Brasil': 'Brasilia',

'"Franga': 'Paris',

'Japédo': 'Téquio',

'"Inglaterra': '?2222'}

>>> capitais['Inglaterra']

122227

Além disso, embora os dicionarios sejam mutaveis, suas chaves ndo podem ser dados mutaveis:
>>> capitais[['esta', 'chave', 'é', 'uma', 'lista']]l = 'xxx'

TypeError: unhashable type: 'list'

Isso faz sentido se pensarmos na restricao de chaves repetidas: eu poderia comecar com duas listas
distintas como chaves do dicionario, e modifica-las até que se tornem idénticas. Isso iria contra a regra
de um dicionario possuir chaves Unicas. Para evitar esse problema, o Python proibe dados mutaveis
como chaves de dicionarios.

Também é possivel deletar algum par chave-valor usando a palavra-chave del:

Asimov Academy 49

Aprendendo Python: Conceitos Basicos

>>> del capitais['Inglaterra']
>>> capitais
{'Brasil': 'Brasilia', 'Franca': 'Paris', 'Japdo', 'Téquio'}

>>> capitais['Inglaterra']
KeyError: 'Inglaterra'

Iterando sobre dicionarios

Se iterarmos sobre um dicionario, vamos iterar sobre suas chaves. A partir delas, é possivel pegar os
valores:
for pais in capitais:

capital = capitais[pais]
print(f'A capital de {pais} é {capital}')

Ordem de iteragdo: os dicionarios preservam sua ordem de inser¢do. Isto significa que, ao iterarmos
sobre ele, as chaves sao devolvidas na ordem em que foram criadas:

dic = {} # Criando um diciondrio vazio
dic = dict() # Forma alternativa para criar diciondrio vazio

dic[10] = 'abc'
dic[3.14] = True
dic['CHAVE'] = 5
dic[False] = ''
print(dic)

for k in dic:

v = dic[k]
print(f'Chave: {k} -> Valor: {v}')

Por favor, ndo criem dicionarios confusos como este! E apenas um exemplo parailustrar a iterac3o.
Normalmente vamos querer trabalhar com dicionarios que representem uma associagdo existente na
vida real.

0 operador in com dicionarios

Podemos usar o operador in para checar se a chave existe no dicionario, antes de acessa-la:

>>> capitais = {

'Brasil': 'Brasilia',
'Franga': 'Paris',
'Japdo': 'Toquio',

}
>>> 'Brasil' 1in capitais
True

Asimov Academy 50

Aprendendo Python: Conceitos Basicos

>>> 'Inglaterra' in capitais
False

Dessa forma, é possivel criar um script que checa se a chave existe ou ndo, e exibe uma mensagem de
acordo com o resultado (evitando assim o KeyError):

capitais = {

'Brasil': 'Brasilia’,
'Franga': 'Paris',
'Japdo': 'Téquio',

}

pais = 'Inglaterra'

if pais in capitais:

print(f'A capital do pais {pais} é {capitais[pais]}')
else:

print(f'Ndo ha capital registrada para o pais {pais}')

Operador in em sequéncias

O operador in ndo é exclusivo de dicionarios. Podemos utiliza-lo também com qualquer sequéncia
para checar se ela contém algum valor especifico:

Listas

>>> valores = [1, 2, 3]
>>> 4 1in valores

False

>>> 3 1in valores
True

Tuplas

>>> nomes = ('Ana', 'Carlos', 'Eduardo')
>>> 'Bruno' 1in valores

False

>>> "Ana' 1in valores
True

Strings
>>> texto = 'Eu estou estudando Python na Asimov Academy!'

>>> 'Java' 1in texto
False

>>> 'Python' 1in texto
True

Note que, no caso de strings, podemos usar o operador 1in para checar se qualquer palavra ou “sub-
string” esta dentro de um string!

Asimov Academy 51

Aprendendo Python: Conceitos Basicos

Resumo

« Dicionarios sdo associagGes entre valores, com cada chave associada a um valor.

« Dicionarios s3o mutaveis. Suas chaves s3o (nicas e ndo podem ser dados mutéveis.

>>> capitais = {
'Brasil': 'Brasilia',
'Franga': 'Paris',
'Japdo': 'Téquio',
}
>>> capitais['Inglaterra'] = 'Londres'
>>> capitais['Brasil'] = "I
>>> del capitais['Japdo']
>>> capitais
{'Brasil': '!', 'Franga': 'Paris', 'Inglaterra': 'Londres'}

+ O operador in é usado para checar se um valor esta dentro de uma sequéncia.

« No caso de dicionarios, x in dretorna se a chave x existe no dicionario d.

+ Nocasodestrings,s in texto retornase o “substring” s aparece dentro do string texto.

Asimov Academy

52

Aprendendo Python: Conceitos Basicos

15. Métodos

0 que é um método?

Em Python, cada tipo de dado diferente (strings, ints, listas, dicionarios) é considerado como sendo
um objeto proprio.

Existem operagdes que vamos querer realizar em um determinado tipo de dado, por exemplo:

« Strings: trocar letras mailsculas por mindsculas
« Listas: adicionar um novo elemento ao final da lista
« Dicionarios: combinar valores de 2 dicionarios diferentes

Algumas dessas operagGes sdo tdo comuns e (teis que ja sdo definidas para cada um dos objetos.
Chamamos estas operacdes de método (de string, de lista, de dicionario...).

Outra forma de pensarmos em métodos é que sdo fun¢des vinculadas a um objeto especifico. Este
conceito de método ndo é exclusivo de Python: outras linguagens de programagdo usam a mesma
ideia.

Como usar um método

Os métodos sdo acessados usando um ponto final entre o objeto e 0 nome do método. Como séo
similares a fun¢Ges, métodos precisam ser chamados com parénteses () para executar.

Exemplo: limpar todos os elementos de um dicionario com o método dict.clear ().

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pdo': 9.00,

}

print(produtos)
produtos.clear()

print(produtos)
Quais métodos existem? Que argumentos aceitam? Podemos descobrir isso da seguinte forma:

« dir(produtos):afungdo dir () retorna uma lista dos métodos existentes para o dicionario

produtos. (Os métodos que comecam com dois underscore, como __str sdo internos do

—_—

Python e podem ser ignorados por enquanto).

Asimov Academy 53

Aprendendo Python: Conceitos Basicos

« help(produtos.nome_do_metodo): a funcdo help() exibe a documentacdao de um
método
+ “Vida real”: procuramos na documentacao online e tutoriais com exemplos.

Como vamos aprender métodos

Vamos passar pelos principais tipos de dados que aprendemos neste curso, para entender que métodos
possuem e como podemos utiliza-los. Conforme formos passando pelos métodos, pense em como
vocé poderia aplicar cada um deles a algum problema, seja um problema que vocé encontra no seu
dia a dia, ou algum exercicio anterior que poderia ser simplificado.

Métodos de dicionarios
dict.clear()

Limpa todos os valores de um dicionario.

>>> produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pao': 9.00,

}

>>> produtos.clear()

>>> produtos

{3

dict.get()

Retorna o valor associado a uma chave, ou retorna um valor substituo caso a chave nao exista (valor-
padrao: None)

>>> produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pao': 9.00,

>>> produtos.get('banana')
3.6

>>> produtos.get('pao')
9.0

Asimov Academy 54

Aprendendo Python: Conceitos Basicos

>>> produtos.get('arroz')

Caso a chave n3o exista, o valor retornado é None, que representa um valor “nulo”. Como o console
omite valores None por padrao, precisamos pegar o valor para exibi-lo em tela:
>>> resultado = produtos.get('arroz')

>>> print(resultado)
None

Também podemos passar um segundo argumento para ser o valor padrdo, ao invés de None:

>>> resultado = produtos.get('arroz', 'ndo cadastrado')
>>> print(resultado)
ndo cadastrado

dict.setdefault()

Faz o mesmo quedict.get (), mascriaaassociacdo chave-valor caso nado exista:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pao': 9.00,

print(produtos) # Diciondrio original

preco = produtos.setdefault('banana', 100.0)

print(produtos) # chave existe -> diciondrio ndo modifica
print(preco) # preco é o valor antigo da chave 'banana'

preco = produtos.setdefault('arroz', 100.0)

print(produtos) # chave ndo existe -> associacdo nova criada
print(preco) # preco é o valor novo adicionado

dict.keys(), dict.values(), dict.items()

Estes métodos retornam sequéncias contendo as chaves, valores, ou pares chave-valor de um di-
cionario, respectivamente. Muito utilizado para iterar sobre o dicionario, principalmente para iterar
sobre cada parcomdict.items():
produtos = {

'banana': 3.60,

'leite': 4.90,
'carne': 15.50,

Asimov Academy 55

Aprendendo Python: Conceitos Basicos

'pao': 9.00,

for chave 1in produtos.keys():
print(chave)

for preco 1in produtos.values():
print(preco)

for par in produtos.items():
print(par)

for chave, preco in produtos.items():
print(f'{chave} -> RS {preco:.02f}")

dict.update()

Atualiza um dicionario a partir de outro. Atualizar significa que chaves novas sdo inseridas, e chaves

existentes sao atualizadas:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pdo': 9.00,

novos_produtos = {
'massa': 5.70,
'banana': 4.40,

print(produtos)

produtos.update(novos_produtos)

print(produtos)

dict.copy()

Cria uma cépia independente de um dicionario:

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pdo': 9.00,

Asimov Academy

56

Aprendendo Python: Conceitos Basicos

produtos_copia = produtos.copy()
produtos_copial['morango'] = 3.30

print(produtos)
print(produtos_copia)

Métodos de nimeros
float.as_integer_ratio()

Mostra dois inteiros que, quando divididos, geram (ou se aproximam) do valor do nimero:

>>> x = 4.5
>>> x.as_integer_ratio()
(9, 2)

>>> x = 38.125
>>> x.as_integer_ratio()
(305, 8)

float.is_integer()

Retorna True se o float representar um nimero inteiro (isto é, por¢do decimal com valor . 0), caso
contrario retorna False:

>>> x = 4.5

>>> x.is_integer()
False

>>> x = 40.0

>>> x.is_integer()
True

Métodos de strings
str.upper() estr.lower ()
Converte palavras para letras mailsculas / minusculas, respectivamente:

>>> palavra = '0la MUnDo!'
>>> palavra.uppercase()

>>> palavra.lowercase()

Asimov Academy 57

Aprendendo Python: Conceitos Basicos

str.startswith() estr.endswith()

Checa se o string comeca ou termina com certa parte de texto:

>>> arquivo = '2023_01_01_NotaFiscal.pdf'
>>> arquivo.startswith('2023_01_01")
True

>>> arquivo.startswith('2023_02_03")
False

>>> arquivo.endswith('.docx")
False

>>> arquivo.endswith('.pdf")
True

Podemos usar para encontrar um arquivo especifico!

arquivo = '2023_01_01_NotaFiscal.pdf'

if arquivo.startswith('2023_01_01') and arquivo.endswith('.pdf'):
print('Encontrado arquivo! Enviando por email ...')

str.count()

Conta o nimero de ocorréncias de um caractere ou substring:

>>> texto = 'Hoje em dia todo dia é um novo dia. Mais um dia chega. Dia!'
>>> texto.count('a')
7

>>> texto.count('dia')
4

A distin¢do entre mailsculas e mintsculas faz com que o Gltimo ""Dia" ndo seja contado. Podemos
corrigir usando métodos encadeados. Primeiro, vamos transformar o texto em letras minGsculas, e
em seguida contar a ocorréncia do string ""dia":

>>> texto = 'Hoje em dia todo dia é um novo dia. Mais um dia chega. Dia!'
>>> texto.lower().count('dia')
5

str.find() estr.index()

Retorna o primeiro indice onde ha um caractere/substring no string:

Asimov Academy 58

Aprendendo Python: Conceitos Basicos

>>> seq = 'aaaaabaaaaaabaaaaaa'
>>> seq.find('b")
5

>>> seq.index('b")
5

Funcionam da mesma forma quando encontram a diferenca é quando o substring ndo esta presente:
o método str. find() retorna o valor -1, enquanto o método str.index () causa um erro:

>>> seq = 'aaaaabaaaaaabaaaaaa'
>>> seq.find('c')
-1

>>> seq.index('c")
ValueError: substring not found

str.isdigit() estr.isalpha()

Retorna se o string é composto apenas de algarismos numéricos ou apenas de letras, respectiva-
mente:
>>> s1 = '202363'

>>> sl.isdigit()
True

>>> s2 = 'mOinoiSAUInaSCiouNACS'
>>> s2.isalpha()
True

>>> s3 = '0la 2023 Python!'
>>> s3.isdigit()

False

>>> s3.isalpha()
False

str.replace()

Substitui um caractere/substring por outro:
>>> frase = 'Estou estudando Javascript!'

>>> frase.replace('!', '?")
"Estou estudando Javascript?'

>>> frase.replace('Javascript', 'Python')
"Estou estudando Python!'

Muito utilizado para remover espagos em branco e quebras de linha!

Asimov Academy 59

Aprendendo Python: Conceitos Basicos

>>> frase = 'Esta é uma frase comprida e bem estruturada.\nEsta frase marca o comego de um
— novo paragrafo.'

>>> print(frase)

Esta é uma frase comprida e bem estruturada.

Esta frase marca o comego de um novo paragrafo.

>>> nova_frase = frase.replace('\n', ' ").replace(' ', '")
>>> print(nova_frase)
Estaéumafrasecompridaebemestruturada.Estafrasemarcaocomegodeumnovoparagrafo.

str.split() estr.join()

str.split() separa um string em um certo caractere, gerando uma lista. Por padrao divide nos
espagos, mas podemos passar um outro caractere para ser o delimitador:

>>> linha = 'Iteml Item2 Item3'
>>> Tlinha.split()
['Iteml', 'Item2', 'Item3']

>>> linha = 'Iteml;Item2;Item3'
>>> linha.split(';")

['Iteml', 'Item2', 'Item3']

str.join() faz o contrario: junta uma lista a partir de um caractere intermediario:

>>> nomes = ['Joana', 'Marcelo', 'Paulo']
>>> ' = ', join(nomes)
'Joana - Marcelo - Paulo'’

Métodos de tuplas

Os métodos de tuplas também existem nas listas, e sdo os mesmos que ja vimos para strings:

tuple.count()
Conta elementos
>>> tup = (0, 0, 0, 1, 0, 1, 0)

>>> tup.count(l)
2

tuple.index()

Retorna o indice do primeiro elemento igual ao argumento. Se nao existir, IndexError:

Asimov Academy 60

Aprendendo Python: Conceitos Basicos

>>> tup = (0, 0, 0, 1, 0, 1, 0)
>>> tup.index (1)
3

>>> tup.index(2)
ValueError: tuple.index(x): x not 1in tuple

Métodos de listas

As listas possuem os métodos list.clear () e list.copy(), que ja vimos nos dicionarios, e
list.count() e list.index () que acabamos de ver nas tuplas.

11 = [0, 0, 0, 1, 0, 1, 0]

12 = 11l.copy()

11[0] = "x'
12.clear ()

print(1l1)
print(12)

list.append()

Adiciona um elemento ao final da lista. é a principal forma de adicionar novos elementos em uma
lista!

numeros = []

for n in range(5):
numeros.append(n * 2)

print(numeros)

Podemos filtrar valores de uma lista se criarmos uma lista vazia, iterarmos sobre a lista original, e
usarmos o método list.append () apenas quando o elemento passar pelo filtro:
valores = [10, 30, -1, 0, 90, -100]
valores_positivos = []
for valor 1in valores:
if valor > 0:

valores_positivos.append(valor)

print(valores_positivos)

Asimov Academy 61

Aprendendo Python: Conceitos Basicos

list.extend()

Se usarmos list.append() comuma lista, a lista inteira entra como um Unico elemento:

>>> numeros = [1, 2, 3]

>>> numeros.append([4, 5, 6])
>>> numeros

[1, 2, 3, [4, 5, 6]]

Neste caso,vamos querer usar List.extend () parainserir cada elemento da lista dentro da primeira
lista:

>>> numeros = [1, 2, 3]

>>> numeros.extend([4, 5, 6])
>>> numeros

[1, 2, 3, 4, 5, 6]

Atenc3o: listas sdo mutaveis, e esta operacdo modifica a lista original! Se quisermos criar uma nova
lista, podemos fazer a mesma operagao usando +:

>>> numeros = [1, 2, 3]
numeros + [4, 5, 6]

>>> novos_numeros =

>>> numeros
(1, 2, 3]

>>> novos_numeros
[1, 2’ 3’ 47 5, 6]

list.insert()

Parecido com list.append (), mas requer posicdo de insercado ao invés de adicionar ao final da
lista.

>>> vogais = ['a', 'i', 'o', 'u'l]
>>> vogais.insert(l, 'e')
>>> vogais

[lal’ |e|, l-il’ IO|’ ‘U']

« Ndo da IndexError (no pior caso, insere no comeco ou final):

>>> vogais = ['a', 'i', 'o', 'u'l
>>> vogais.insert (100, 'e')
>>> vogais

['a'; |.i|’ 'O', 'U‘, |el:|

Mesmo assim, requer que saibamos a posi¢ao para inserir de antemao.

Asimov Academy 62

Aprendendo Python: Conceitos Basicos

list.pop()

Remove um elemento da lista e o retorna:

>>> valores = [150, 30, 50, 75, 45, 90]
>>> valor_removido = valores.pop()

>>> valor_removido
90

>>> valores
[150, 30, 50, 75, 45]

Por padrdo pega o ultimo elemento (fazendo assim a operagdo contrariaao list.append()), mas
aceita um indice para escolhermos o valor a remover:

>>> valores = [150, 30, 50, 75, 45, 90]

>>> valor_removido = valores.pop(0) # Remove o primeiro da lista

>>> valor_removido
150

>>> valores
[30, 50, 75, 45, 90]

Muito Gtil para processamento em sequéncia!
clientes = ['xxxx', 'yyyy', 'zzzz']

while clientes: # Enquanto lista ndo estd vazia
cliente = clientes.pop()
print(f'Processando pedido do cliente {cliente}...")

print('Todos os pedidos processados!')
print(clientes)

list.reverse() elist.sort()

Como os nomes sugerem, sao usados para inverter e ordenar os elementos:

>>> valores = [150, 30, 50, 75, 45, 90]
>>> valores.reverse()

>>> valores

[90, 45, 75, 50, 30, 150]

>>> valores.sort()
>>> valores
[30, 45, 50, 75, 90, 150]

Para ordenarmos os elementos do menor pro maior, podemos primeiro fazer chamar Llist.sort (),
eemseguida list.reverse().

Asimov Academy 63

Aprendendo Python: Conceitos Basicos

Para ordenar uma lista, é preciso que os elementos sejam comparaveis entre si! Ndo é possivel ordenar
uma lista contendo strings e ints, porque Python ndo sabe comparar niimeros e texto:

>>> valores = [150, 30, 'Python']
>>> valores.sort()
TypeError: '<' not supported between +instances of 'str' and 'int'

Resumo

« Métodos sdo fungGes associadas a um objeto. Em geral, apresentam funcionalidade muito dtil
para aquele tipo de dado

« Chamamos métodos com a sintaxe objeto.nome_do_metodo (), (possivelmente passando
argumentos dentro dos parénteses).

Cada objeto possui seus métodos especificos, de acordo com operagdes comuns que gostariamos
de realizar com ele.

Utilize a lista de métodos acima para rever a utilidade de cada método!

Asimov Academy 64

Aprendendo Python: Conceitos Basicos

16. Aula extra - Compreensao de lista

Quando queremos filtrar valores em Python, é muito comum desenvolvermos um codigo como este:

valores = list(range(10))
maiores_que_cinco = []
for valor +in valores:

if valor > 5:

maiores_que_cinco.append(valor)

print(maiores_que_cinco)

Podemos recriar esta loégica em uma Gnica linha, usando uma compreensao de lista!

A estrutura de uma compreensao de lista

A estrutura de uma compreensao de lista tem o seguinte formato:
NOVA_LISTA = [RESULTADO para cada ELEMENTO em SEQUENCIA se CONDICAO]

Pode parecer confuso. Mas pensarmos no codigo anterior, ja tinhamos esta estrutura basica distribuida
no bloco central:

NOVA_LISTA = []
para cada ELEMENTO em SEQUENCIA:
se CONDICAO:
RESULTADO entra em NOVA_LISTA

Criando a compreensao de lista

Se reestruturarmos o c6digo acima para uma compreensao de lista, temos:

valores = list(range(10))
maiores_que_cinco = [valor for valor in valores 1if valor > 5]

print(maiores_que_cinco)

Para deixar ainda mais claro, podemos até reordenar cada bloco dentro da lista:

valores = list(range(10))

maiores_que_cinco = [

Asimov Academy 65

Aprendendo Python: Conceitos Basicos

valor
for valor 1in valores
if valor > 5

print(maiores_que_cinco)

Também é possivel modificar os valores na lista original de acordo com uma légica qualquer:

valores = list(range(10))

resultado = [
valor + 5
for valor 1in valores
if valor > 5

print(resultado)

Por que usar compreensao de lista?

Pode parecer apenas um detalhe, mas usar compreensao de lista facilita bastante a escrita de cédigo.
Ela é uma forma mais enxuta de criar listas a partir de outras listas, especialmente quando nos acos-
tumamos com sua sintaxe. Ao invés de precisarmos “ocupar” o codigo com um for loop de diversas
linhas, usamos a compreensao de lista para fazer a mesma tarefa em uma Gnica linha.

Asimov Academy 66

Aprendendo Python: Conceitos Basicos

17. Funcgoes

Criando fungoes

Até aqui, usamos algumas func¢des pré-fabricadas pelo Python. Oficialmente, sdo fungGes embutidas
(built-in functions) da linguagem. Mas podemos criar nossas proprias funcdes para o nosso codigo!

Sintaxe de criacdo de fungoes

+ def para definir uma fungao

Abrir e fechar parénteses para definir os parametros

Dois pontos para iniciar o corpo da funcao

Corpo da funcao com indentacao

Ao final da fungdo, algum valor pode ser retornado dela usando a palavra-chave return

Exemplo: fungdo que soma o valor 2 ao nimero que recebe como argumento:

def somar_dois(n):
return n + 2

print(somar_dois(10))
print(somar_dois(0))

print(somar_dois(-3.15))

O importante aqui é entender que o valor 10, que é passado com argumento da fun¢do, ocupa o
espaco do parametro n, que definimos ao criar a fungao!

Tipo de dado e nomenclatura

Os tipos de dados que as func¢des aceitam nao precisam ser declarados. Na func¢ao acima, em nenhum
lugar informamos que n é um int. Na realidade, a fungdo funciona também com float, como
pudemos ver.

Python nunca vai impor uma declaracao do tipo de dado para determinada funcdo. Enquanto o
programa nao der bug, ele segue adiante!

Isso é bom e ruim ao mesmo tempo: bom porque nos permite ser flexiveis, e ruim porque podemos
introduzir bugs em algum ponto do c6digo sem perceber.

Asimov Academy 67

https://docs.python.org/3/library/functions.html

Aprendendo Python: Conceitos Basicos

Escolhendo nomes
Quando crio uma fungdo, é importante escolher bem tanto o nome da fun¢do quanto o nome dos
parametros (se houver). Ambos sdo formas de entendermos o que exatamente a funcao faz!

A fungdo abaixo serve para concatenar texto. Podemos chama-la simplesmente de c:
def c(s1, s2):
return sl + s2
print(c(xxx', "yyy'))
print(c('Python', 'Basico'))

print(c('Meu nome é ', 'Juliano'))

Mas faz mais sentido chama-la de algo descritivo, como concatenar_texto:

def concatenar_texto(textol, texto2):
return textol + texto2

print(concatenar_texto('xxx', 'yyy'))

print(concatenar_texto('Python', 'Basico'))

print(concatenar_texto('Meu nome é ', 'Juliano'))

E lembre-se: ndo importa o nome da fung¢ao, nada impede que eu passe outro tipo de dado para ela.
Enquanto ela ndo gerar um erro, vai executar, mesmo que nao faca exatamente o que eu gostaria.

A funcdo concatenar_texto, por mais que tenha sido criada apenas para juntar dois strings,
também serve para somar 2 valores. Isso é consequéncia da flexibilidade de Python.

def concatenar_texto(textol, texto2):
return textol + texto2

print(concatenar_texto(2, 3))

Para qué usar funcoes?

As fung¢Ges que vimos aqui sdo simples, mas pensem em qualquer bloco de cédigo que criamos nos
desafios, que pudessem ser representadas por uma agao Unica:

« Validagdo de input do usuério
« Perguntar por um chute (desafio de adivinhe o niimero)

Asimov Academy 68

Aprendendo Python: Conceitos Basicos

Exemplo: transformando validacdo de input em um cédigo préprio:

def pegar_input_validado():
while True:

opt = input('Escolha uma opcgdo (1, 2) | "q" para sair: ')

if opt == 'q':
break

elif opt not in ('1', '2'):
print('Opgdo invalida! Digite 1 ou 2.")
continue

return opt

for n in range(3):
opcao = pegar_input_validado()
print(f'Opcdo selecionada: {opcao}')

Func¢des nos ajudam a organizar nosso proprio cédigo, dando um nome a blocos légicos que fazem
uma acdo especifica. Além disso, se eu descobrir que hd um bug no cddigo que pega um input validado,
ja sei onde procurar: na sua fungdo!

Parametros e argumentos
Formalmente, as variaveis na definicdo da fungdo sdo chamados de parametros. Eles sdo substituidos
por argumentos na hora de chamar a fungao.

No exemplo abaixo, n é o pardmetro, e x é o argumento:

def somar_dois(n):
return n + 2

x = 10

resultado = somar_dois(x)
print(resultado)

No dia a dia, os conceitos acabam sendo intercambiaveis, mas é importante ter claro que sdo coisas
distintas.

Parametros com valor padrao

Podemos criar valores-padrao para parametros:

Asimov Academy 69

Aprendendo Python: Conceitos Basicos

>>> def adicionar_final(texto, final='!!!"):
return texto + final

>>> adicionar_final('0la')
>>> adicionar_final('0la', '222")

Quando ndo passamos um dos argumentos, o valor padrdo do parametro é utilizado.

O Unico detalhe é que pardmetros com valor padrdo devem obrigatoriamente vir apds os demais. O
Python tem essa obrigacao para evitar confusdo na hora de chamar a fungao:
>>> def adicionar_final(texto='01a', final):

. return texto + final
SyntaxError: non-default argument follows default argument

Se eu conseguisse definirafun¢do daformaacima, eachamassecomadicional_final('XXXX"'),
ficaria ambiguo se o valor ' XXXX' deveria substituir o pardmetro texto (ja que ha apenas um
argumento na chamada da funcdo) ou o pardmetro final (ja que o pardmetro texto possui um
valor padrao).

Passando argumentos através de palavras-chave

Se soubermos o nome dos parametros, podemos passa-los explicitamente, mesmo que estejam fora

de ordem. Observe:
def dividir(a, b):
if b == 0:
return 'Impossivel dividir!'

else:
return a / b

print(dividir(10, 5))

print(dividir(a=10, b=5))
print(dividir(a=10, b=0))
print(dividir(b=10, a=0))

Muitos programas como o Mu ou outras IDEs exibem o nome dos parametros quando estamos es-
crevendo codigo. Isso nos ajuda a chamarmos as fungdes passando pardmetros de forma explicita, e
ajuda na leitura e compreensao do nosso préprio codigo.

Asimov Academy 70

Aprendendo Python: Conceitos Basicos

Em c6digos mais avangados, é comum termos fungGes com muitos pardmetros, sendo que apenas
poucos argumentos sdo passados diretamente para a funcdo. Os valores-padrdo sdo utilizados para
todos os outros parametros!

def funcao_complexa(
param_1=0,
param_2=0,
param_3=0,

param_4=0,

return param_1 + param_2 + param_3 + param_4

funcao_complexa(param_3=10)

Funcdes sem parametros

E possivel criar funcdes sem parametros:

def retornar_lista():
return [1, 2, 3]

print(retornar_Llista())

E mais comum pensarmos em funcdes como “caixas” para as quais entregamos algum input e recebe-
mos seu output. Contudo, em alguns casos podemos querer ter fun¢des que ndo recebam parametros
e nem retornem nada, como no caso de uma funcao que exibe algum texto na tela:

def dizer_ola():
print('0lat")

dizer_ola()

dizer_ola()
dizer_ola()

Dito isso, tome cuidado para ndo deixar seu codigo complexo. Fungbes sem parametros sdo indicativos
de um fluxo confuso no seu codigo!

O valor None

Além de ndo ter parametros, a funcdo dizer_ola() que definimos acima também ndo retorna
nada... Ou pelo menos parece nao retornar nada.

Na realidade, a fungdo retorna o valor None, que representa a “auséncia” de valor. Este valor é um
nome préoprio em Python, escrito com letra N mailscula.

Asimov Academy 71

Aprendendo Python: Conceitos Basicos

E bastante utilizado como “valor sentinela” para indicar que uma operacéo falhou, como por exemplo
nométododict.get():

produtos = {
'banana': 3.60,
'leite': 4.90,
'carne': 15.50,
'pdo': 9.00,

print(produtos.get('banana'))

print(produtos.get('pdo'))

print(produtos.get('arroz'))

Note que o valor None ndo é o nimero zero, pois ndo posso fazer contas matematicas com ele. Em

outras linguagens de programacao, esse valor é comumente chamado de “null”, “NA”, entre outros
nomes.

Retornando None

Qualquer fungdo que ndo possua um return explicito vai retornar None:

def dizer_ola():
print('0latl")

retorno = dizer_ola()
print(retorno)

Caso eu prefira, posso ser explicito e retorna-lo diretamente:

def dizer_ola():
print('0lal")
return None

retorno = dizer_ola()
print(retorno)

def dizer_ola():
print('0olal")
return

retorno = dizer_ola()
print(retorno)

Asimov Academy 72

Aprendendo Python: Conceitos Basicos

Fungoes sem retorno

A propria fungdo print é um exemplo de fungdo que nao retorna nada:

retorno = print('Olal")
print(retorno)

Alguns métodos também ndo retornam valores, principalmente aqueles que modificam dados
mutaveis:

lista = [1, 2, 3]
lista.append(4)

print(lista)
retorno = lista.append(5)

print(lista)
print(retorno)

Muitos iniciantes na linguagem esperam que a linha retorno = lista.append(5) devolva
uma nova lista, e se surpreendem que a variavel retorno esteja vazia. Na realidade, o método
list.append() modifica a lista que chama o método diretamente, sem que seja necessario re-
tornar nada. Isso é uma decorréncia direta da mutabilidade de listas!

Em Python, se diz que o método list.append () modifica os dados in-place, ou seja, mantendo-os
na mesma variavel.

.z

Por outro lado, métodos que trabalham com dados imutaveis vdo sempre retornar um novo objeto (ja
que ndo podem modificar o objeto que chama o método):

texto = 'Python'
print(texto)
retorno = texto.upper()

print(texto)
print(retorno)

Confusao com console de Python

O console de Python sempre exibe valores retornados, exceto quando o valor é None. Essa omissao
é Gtil quando a conhecemos e estamos testando c6digo, mas esse comportamento pode confundir
iniciantes da linguagem!

>>> lista = [1, 2, 3]
>>> lista.append(4)

Asimov Academy 73

Aprendendo Python: Conceitos Basicos

>>> texto = 'Python'
>>> texto.upper()

O mais confuso é afuncdo print (). Afuncdo porsisé retorna None, que é omitido do console. Mas o
texto aparece no console de qualquer forma simplesmente porque este é o comportamento da fungao
print()!

>>> print('0la')
ola

Estes conceitos sdo detalhes em Python, mas é bom entender para nao se confundir nos seus codigos.

Se em algum momento vocé estiver trabalhando com uma variavel que contém o valor None, provavel-
mente vocé esperava obter algum valor de retorno de alguma fun¢do / método, mas este retornou
None. Fique de olho!

Resumo

« Criamos nossas proprias fun¢des com a sintaxe:

def nome_funcao(parametrol, parametro2='valor padrdo vai aqui'):
return algum_valor

+ E depois chamamos as fungdes como qualquer outra fungao:

>>> nome_funcao (' XXX")

>>> nome_funcao(parametrol="YYY', parametro2='Z77")

« A légica do corpo da fungdo é inteiramente definida por nés mesmos, de acordo com o que
queremos que ela faca.

+ Funcoes que ndo retornem nenhum valor acabam por retornar um valor nulo, chamado None.

« OvalorNone também é retornado pela fungdo print (), e por métodos que atuem diretamente
em objetos mutaveis, como list.append() oudict.update().

Asimov Academy 74

Aprendendo Python: Conceitos Basicos

18. Modulos de Python e a biblioteca padrio

Importacao

N3o estamos limitados apenas ao cddigo que escrevemos e as fungdes built-in de Python. Podemos
também importar conteldo de outros scripts através de modulos! Até aqui, estive trabalhando sempre
no mesmo script,o hello_world. py.

Vamos criar o seguinte script chamado meu_modulo. py, que sera importado a partir de outro
script:

def minha_funcao():
print('Rodando "minha_funcao" do médulo "meu_modulo"!")
return 10
X = 30
Rode o script abaixo da mesma pasta em que esta o script meu_modulo. py:
import meu_modulo
retorno = meu_modulo.minha_funcao()

print(retorno)

print(meu_modulo.x)

Como pudemos ver, nosso script tem acesso a todas as variaveis e fungdes que estdo vinculadas ao
script meu_modulo. py!

A palavra-chave import
Usamos a palavra-chave import para importar algum médulo. Por convengdo, sempre importamos
tudo no topo do script. Posso importar um médulo de formas diferentes.

1) Importando o médulo em si: variaveis ficam vinculadas ao nome do médulo

import meu_modulo
retorno = meu_modulo.minha_funcao()
print(retorno)

print(meu_modulo.x)

2) Importando cada variavel individualmente: acesso apenas com o nome da variavel.

Asimov Academy 75

Aprendendo Python: Conceitos Basicos

from meu_modulo import minha_funcao, x

retorno = minha_funcao()

print(retorno)

print(x)

3) Importando todas as variaveis (com *): importo todos os valores do médulo.
from meu_modulo import *

retorno = minha_funcao()

print(retorno)

print(x)

A opcao 3) é pratica, porém esconde o nome das variaveis. Pode ser que alguma variavel minha seja
sobrescrita por um nome que é importado!

Alias

Podemos mudar o nome do mddulo ao importar. Isso nos ajuda a abreviar nomes compridos, ou a dar
nomes mais significativos a algum médulo:

import meu_modulo as mm

retorno = mm.minha_funcao()

print(retorno)

print(mm.x)

Também posso fazer isso com variaveis individuais de um médulo:
from meu_modulo import minha_funcao as mf, x as y

retorno = mf()

print(retorno)

print(y)

Pra qué modulos?

Da mesma forma como func¢des nos ajudam a organizar blocos de cédigo dentro de um script, médulos
nos ajudam a organizar codigo em pedacos que fagam sentido. Por exemplo, posso querer organizar

Asimov Academy 76

Aprendendo Python: Conceitos Basicos

meu codigo que acessa um banco de dados fica separadamente do cédigo que manipula e analisa os
dados, que por sua vez esta separado do cddigo que exibe os dados em um dashboard.

Se vocé conseguir organizar tudo em um script, 6timo. Mas é comum em projetos maiores ou mais
complexos dezenas de scripts de Python, cada um fazendo uma agado especifica.

Essa divisdo ajuda também na hora de organizar trabalho em equipe: cada pode focar em um ponto
diferente do programa (isto é, em arquivos distintos).

A biblioteca padrao

N&o precisamos fazer tudo do zero! Python inclui uma biblioteca padrao que contém inimeras fun-
cionalidades (inlmeras mesmo), prontas para utilizarmos. Estdo disponiveis em qualquer instalagdo
padrdo de Python. Portanto, temos garantia de que vamos conseguir importa-las sem precisar instalar
nada a mais!

O site principal da biblioteca padrdo esta neste link.

Tour por alguns modulos da biblioteca padrao

math.py: contas e definicdes matematicas avancadas.

import math

print(math.pi)

print(math.log(16, 2))

datetime. py: objetos que representam datas e horas.
import datetime

print(datetime.datetime.now())

agora = datetime.datetime.now()
ano_2000 = datetime.datetime(2000, 1, 1)

print(agora - ano_2000)

random. py: médulo para sorteios aleatérios de nimeros e valores.
import random

for _ 1in range(5):

n = random.randint(l, 10)
print(f'Nimero escolhido: {n}")

Asimov Academy 77

https://docs.python.org/3/library/index.html

Aprendendo Python: Conceitos Basicos

nomes = ['Juliano', 'Marcos', 'Pedro']
for _ in range(5):

nome = random.choice(nomes)
print(f'Nome escolhido: {nome}")

os.py: modulo de interagdo com meu sistema operacional e seus arquivos.
import os

print(os.getcwd())

print(os.listdir())

time. py: modulo para medi¢do de tempo (ex: medir quanto tempo o programa leva para executar).
import time

inicio = time.time()

print('Primeira linha')

time.sleep(2)

print('Segunda linha')

final = time.time()

tempo_execucao = final - dinicio

print(f'Script rodou em {tempo_execucao:.3f}")

Utilize a biblioteca padrao!

Programadores experientes ja passaram muitas vezes pela seguinte situagdo: gastar tempo escrevendo
codigo para algo que ja existia na biblioteca padrao.

As vezes, esse processo de “reinventar a roda” é bom para o aprendizado. Mas pensando em producéo
de cddigo, além de ser uma “perda de tempo”, provavelmente o codigo final sera pior que o codigo
na biblioteca padrdo. Afinal de contas, o cddigo da biblioteca padréo ja foi testado por milhares ou
milhdes de desenvolvedores que o utilizam todos os dias!

Resumo

« Importe scripts com a palavra-chave import.

« E possivel importar de diferentes formas:

Asimov Academy 78

Aprendendo Python: Conceitos Basicos

import modulo

import modulo as M

from modulo timport X, Y, Z
from modulo import X as xxx

from modulo +import *

Utilize funcionalidade da biblioteca padrdo sempre que possivel!

Asimov Academy

79

	01. Como Aprender Python?
	Dicas para estudar Python
	Como se escreve código Python

	Preciso mesmo usar o Mu?

	02. Conhecendo a IDE Mu
	Instalação
	Criando o primeiro script: Hello World
	A função print()
	Erros em Python
	Resumo

	03. Script, console e debugger
	Scripts
	Console
	Qual utilizar?
	Código em script
	Código no console

	Depurador (debugger)
	Resumo

	04. Números em Python: int e float
	int
	float
	A função type
	Matemática básica com Python
	Regras básicas de matemática
	Resumo

	05. Texto em Python: str
	Texto e números
	Operações com strings
	Tamanho de um string
	Funções e tipos de dados
	Resumo

	06. Variáveis
	Regras para nome de variáveis
	Cuidado: sobrescrevendo nomes já existentes
	Resumo

	07. Inserindo e formatando texto
	A função input()
	Inserindo variáveis no texto com f-strings
	Quebras de linha
	Strings brutos
	Resumo

	08. Controle de fluxo e operadores
	Controle de fluxo na vida real
	Controle de fluxo em Python: if e else
	Sintaxe de controle de fluxo
	A palavra-chave elif
	Operadores de comparação
	Operadores booleanos
	Recriando o controle de fluxo da imagem
	Resumo

	09. Listas e tuplas
	Listas
	Indexação
	Modificando listas
	Tuplas
	Resumo

	10. Sequências e slicing
	Sequências
	Sequências verdadeiras e falsas
	Slices
	O valor de pulo no slice
	Resumo

	11. Função range e for loops
	A função range
	Função range vs slicing
	Parâmetros de um range: Start, stop, step
	For loops
	Repetindo ações múltiplas vezes
	Resumo

	12. Iterando sobre sequências
	Formatando sequências
	Desempacotamento de sequências
	Resumo

	13. While Loops, break e continue
	While loops
	Loop infinito
	Palavra-chave break
	Palavra-chave continue
	Uso para while loop: pedir por um input específico
	Resumo

	14. Dicionários e o operador in
	Dicionários
	Sintaxe de um dicionário
	Usando dicionários
	Iterando sobre dicionários
	O operador in com dicionários
	Operador in em sequências
	Resumo

	15. Métodos
	O que é um método?
	Como usar um método
	Como vamos aprender métodos

	Métodos de dicionários
	dict.clear()
	dict.get()
	dict.setdefault()
	dict.keys(), dict.values(), dict.items()
	dict.update()
	dict.copy()

	Métodos de números
	float.as_integer_ratio()
	float.is_integer()

	Métodos de strings
	str.upper() e str.lower()
	str.startswith() e str.endswith()
	str.count()
	str.find() e str.index()
	str.isdigit() e str.isalpha()
	str.replace()
	str.split() e str.join()

	Métodos de tuplas
	tuple.count()
	tuple.index()

	Métodos de listas
	list.append()
	list.extend()
	list.insert()
	list.pop()
	list.reverse() e list.sort()

	Resumo

	16. Aula extra – Compreensão de lista
	A estrutura de uma compreensão de lista
	Criando a compreensão de lista
	Por que usar compreensão de lista?

	17. Funções
	Criando funções
	Sintaxe de criação de funções

	Tipo de dado e nomenclatura
	Escolhendo nomes
	Para quê usar funções?
	Parâmetros e argumentos
	Parâmetros com valor padrão
	Passando argumentos através de palavras-chave
	Funções sem parâmetros
	O valor None
	Retornando None
	Funções sem retorno
	Confusão com console de Python
	Resumo

	18. Módulos de Python e a biblioteca padrão
	Importação
	A palavra-chave import
	Alias
	Pra quê módulos?
	A biblioteca padrão
	Tour por alguns módulos da biblioteca padrão
	Utilize a biblioteca padrão!
	Resumo

