L i
Estrutura'@e dados e algoritmos

Modulo 3 - Estrutura de dados e algoritmos

Fala, dev!

Neste modulo, vamos aprofundar nossos conhecimentos em estruturas de dados e algoritmos, dois pilares
fundamentais para qualquer programador. Vamos explorar esses conceitos de forma didatica e pratica.
Preparado? Vamos la!

O que sao estruturas de dados?

As estruturas de dados sao como a chave para organizar o caos no mundo da programacao. Imagine que vocé é
o administrador de uma biblioteca gigante com milhares de livros. Como vocé organizaria todos esses livros para
que qualquer pessoa pudesse encontrar o que procura facilmente? E para resolver esses problemas que nds
podemos utilizar as Estruturas de Dados.

No computador, podemos fazer algo parecido. Quando temos muitos pedacos de informacdo, como numeros ou
nomes, colocamos eles em “caixinhas especiais” chamadas de Estruturas de Dados. Ou seja, sao como
ferramentas que ajudam a organizar informagodes para serem acessadas e manipuladas de maneira eficiente.

Agora vou te dar alguns exemplos:

1. Fila da Padaria (Fila - Queue): Vocé ja esteve em
uma padaria onde as pessoas formam uma fila
para comprar paes e bolos? Essa & uma fila na
vida real, que funciona exatamente como uma ;f’ / ' A < 3
Estrutura de Dados chamada "Queue" (Fila). A ! s]
primeira pessoa que chega é a primeira a ser - -
atendida.

Fim Inicio

2. Agenda de Contatos (Lista - Array): A agenda de
contatos no seu celular € um exemplo de uma lista
(array). Cada contato é um item na lista, e vocé
pode acessa-los por posicao, assim como na
estante de livros que mencionamos anteriormente.

Moddulo 3 - Estrutura de dados e algoritmos

3. Dicionario (Dicionario - Hashmap): Pense em um T P e I G

e . PEan o
dicionario fisico onde vocé procura palavras e i e
suas definicdées. No mundo digital, um exemplo é o '7.;’.‘";,%"5:;;“
mecanismo de busca na internet, como o Google. !’g;-,g'ss" _w_”’ s V.
Vocé digita uma palavra-chave (como "receitas de ::Z eé'ng; T 7 ey .g%(s"ﬂ;g;‘iﬂ:.‘;:ﬁ':m
', Ce 7 4

A o e
=7 1. Que p; w2
et 2

bolo") e obtém uma lista de resultados
relacionados, como um dicionario onde vocé
encontra informagdes relevantes.

4. Redes Sociais (Grafo - Graph): Redes sociais
como o Facebook ou o Instagram sao como um
grande grafo, outra Estrutura de Dados. Os perfis
s30 0s nos (ou vértices) e as amizades ou
seguidores sao as arestas (ou conexdes) que ligam
esses nos. Isso permite que as redes sociais
identifiguem quem é amigo de quem e mostrem
seu conteudo para as pessoas certas.

5. Playlist de Musica (Lista Encadeada - Linked
List): Algumas playlists de musica sao criadas com
uma Estrutura de Dados chamada "Linked List"
(Lista Encadeada). Cada musica esta ligada a
proxima, como uma corrente, permitindo que vocé
avance ou retroceda facilmente na lista de
reproducao.

ﬁ Kevin Abstract

6. Caixa de Emails (Pilha - Stack): Imagine sua caixa
de entrada de e-mail como uma pilha de cartas. A
Ultima carta que vocé recebeu esta sempre no
topo da pilha. Quando vocé |é ou remove uma
carta, é como desempilhar a Ultima. E por isso que
vocé |é e-mails na ordem em que sao recebidos -
é uma pilha.

Com certeza vocé ja se deparou com os exemplos acima no seu cotidiano, e agora tem o conhecimento de como
essas informacdes sao estruturadas.

Array (Matriz)

Um array em linguagem de programagao € uma estrutura de dados que nos permite armazenar uma colegao
ordenada de elementos sob um Unico nome. Esses elementos podem ser nimeros, palavras, objetos, ou qualquer
outro tipo de dado que a linguagem de programacgao suporte.

Moddulo 3 - Estrutura de dados e algoritmos

A principal caracteristica de um array € a sua capacidade de organizar os elementos em posi¢ées numeradas,
comecando geralmente do zero. Isso facilita 0 acesso e a manipulagao desses elementos, uma vez que vocé
pode se referir a eles pelo indice da posigao em que estdo armazenados.

« -» Parainicializar uma variavel do tipo Array, podemos iniciar sem itens: array = []
‘e

Ou com alguns itens de inicio:

array = ["texto", 123, 4.56, True
y ’ ’

E esses itens podem ser de diversos tipos (
string, numero inteiro, numero flutuante, booleano).

5% Paraacessar uma posicao do array, nos utilizamos uma contagem a partir do O (zero). Isso € comum ao
lidar com linguagens de programacao, pois o computador “conta de 0 a 10 e nao de 1a 10", como nds
humanos.

Por isso que no
Python, ao utilizarmos a estrutura de repeticdo for valor in range (10), Sem dizer para fungao
range () que deve comecar do 1 (um), ele nos traz um resultado a partir do O (zero).

Por exemplo, se vocé tiver um array de numeros inteiros chamado idades , podera acessar o primeiro elemento
usando idades[o] , 0 segundo usando idades[1] , € assim por diante.

Em Python:
idades = [10, 15, 16, 20]

print(idades[0]) # 10
print(idades[1]) # 15
print(idades[2]) # 16
print(idades[3]) # 20
print(idades[4]) # Ao acessar uma posicdo inexistente, isso resultara em ERROR

Nao apenas podemos acessar um elemento especifico em uma lista, mas também podemos recuperar um periodo
de itens consecutivos dentro da lista. Para fazer isso, utilizamos o operador : (dois pontos) para definir o inicio e
o fim do intervalo que desejamos acessar. Isso é particularmente Util quando queremos trabalhar com uma parte
especifica de uma lista sem a necessidade de percorré-la inteira.

Vamos explorar isso em um exemplo pratico de cédigo para entender melhor. Suponha que temos uma lista
chamada nuneros € queremos acessar os elementos do indice 2 ao indice 5.

Em Python:

numeros = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
intervalo = numeros[2:6]

print(intervalo) # Resultado: [2, 3, 4, 5]

Neste exemplo, numeros(2:6] nOs dard uma nova lista contendo os elementos dos indices 2, 3, 4 e 5 da lista
numeros . O intervalo comeca no indice 2 e vai até, mas nao inclui, o indice 6.

Essa capacidade de acessar periodos de itens em listas é valiosa para tarefas como filtrar dados especificos,
criar subconjuntos de informagdes e muito mais. Portanto, lembre-se do operador : ao trabalhar com listas em
Python, pois ele pode simplificar bastante seu cédigo e tornar suas operagdes mais eficientes."

<~ Tamanho / Length (comprimento)

Moddulo 3 - Estrutura de dados e algoritmos

len()

e O método 1en() em Python é uma fungao embutida (built-in) que nos permite determinar o
comprimento ou o numero de elementos em uma estrutura de dados, como uma lista, uma string,
uma tupla, entre outras.

o Listas: Para listas, o 1en () retorna o numero de elementos contidos na lista.

Em Python:

frutas = ["macd", "banana", "laranja"]

tamanho = len(frutas) # Resultado: 3

Retorna 3, pois h& 3 elementos na lista.

o Strings: Para strings, 0 1en () retorna o numero de caracteres na string
Em Python:

texto = "0la, mundo!"

tamanho = len(texto) # Resultado: 12

Retorna 12, pois ha 12 caracteres na string.

O método 1en () € util quando vocé precisa saber o tamanho de uma estrutura de dados
em seu programa. Pode ser usado em loops, condicionais e em varias outras situacoes
em que vocé precisa tomar decisées com base na quantidade de elementos ou
caracteres presentes em uma variavel.

<~ Métodos / funcoes de manipulacao de lista (array) em Python

As listas (arrays) sdo estruturas de dados que permitem armazenar e manipular colecdes de elementos. Vamos
explorar alguns métodos importantes que nos ajudam a trabalhar com listas de maneira eficiente:

=} append()

e O método append () € utilizado para adicionar um elemento ao final de uma lista.

Por exemplo, se temos uma lista (array) chamada rrutas e queremos adicionar a fruta "maca" ao final da lista,
podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]
frutas.append("maca")

print(frutas) # Resultado: ["banana", "laranja", "uva", "macga"]

Moddulo 3 - Estrutura de dados e algoritmos

== pPop(index)

e O método pop () é usado para remover um elemento de uma lista com base no indice fornecido e,
opcionalmente, retornar o valor removido.

e index € 0 valor referente ao indice que queremos remover. Caso deixemos vazio, ele ird passar o
indice -1 como padrao e remover o ultimo item da lista (array).

Por exemplo, se quisermos remover o elemento "laranja" da lista rrutas , podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]
fruta_removida = frutas.pop(1)

print(frutas) # Resultado: ["banana", "uva"]
print(fruta_removida) # Resultado: "laranja"

Q reverse()

e O método reverse () inverte a ordem dos elementos em uma lista (array).

Em Python:

frutas = ["banana", "laranja", "uva"]
frutas.reverse()

print(frutas) # Resultado: ["uva", "laranja", "banana"]

0/ clear()

e O método ciear () é usado pararemover todos os elementos de uma lista, deixando-a vazia.

Por exemplo, se temos uma lista (array) chamada rrutas jd com alguns itens e queremos limpar/excluir todos os
elementos, podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]
frutas.clear()

print(frutas) # Resultado: []

Arrays sao amplamente utilizados na programagéao para armazenar e processar dados de maneira eficiente. Eles
sao Uteis quando vocé precisa lidar com conjuntos de informagdes semelhantes, como uma lista de nomes, notas

de alunos, ou registros de vendas. E uma maneira poderosa de organizar e trabalhar com dados em programas de
computador.

Para saber mais, eu vou deixar dois links de um material externo para consulta:

Moddulo 3 - Estrutura de dados e algoritmos

5. Estruturas de dados

Esse capitulo descreve algumas coisas que vocé ja aprendeu em detalhes e adiciona algumas
coisas novas também. Mais sobre listas: O tipo de dado lista tem ainda mais métodos. Aqui estao
apresentado...

@ https://docs.python.org/pt-br/3/tutorial/datastructures.html

Listas — Como pensar como um Cientista da Computacao: Edigao Interativa em Python

Uma lista (list) em Python é uma sequéncia ou colecao ordenada
de valores. Cada valor na lista é identificado por um indice. O
valores que formam uma lista sdo chamados elementos ou itens.

@ https://panda.ime.usp.br/pensepy/static/pensepy/09-Listas/listas.html

Agora, vamos entender como podemos manipular o Array para resolver diversos problemas. &

Pilhas (Stacks) - LIFO

A Pilha é uma estrutura de dados bastante simples, basta vocé pensar em uma pilha de pratos, onde o ultimo
prato colocado, é o primeiro a ser retirado da pilha.

Esse fluxo de “altimo item a entrar na pilha, é o primeiro item a sair da fila” é chamado
de LIFO, que é a sigla para Last In, First Out.

Traduzindo do inglés para o portugués, entendemos:
Primeiro a entrar, Ultimo a sair.

Exemplo visual:

Empilhar (10) Empilhar (5) Empilhar (15) Desempilhar
4 4 4 4
3 3 3 3

(]
]
5]
L

P

1 V| s mmm 1 | s Ul Kamm
0 10_ o | 10 o | 10 o | 10

Topo: 0 Topo: | Topo: 2 Topo: 1

3%

A pilha pode ser representada como na imagem acima, onde temos uma lista organizada de baixo para cima. Isso &, todos os itens
adicionados na lista, vao para o topo, sendo empilhados. Agora, ao desempilhar, vamos buscar o ultimo item adicionado, aquele que
estd no topo da lista.

Para que possamos manipular uma lista (array) de forma que se comporte como uma pilha, podemos definir o
codigo abaixo.

Primeiro criamos uma funcdo chamada adicionar_1ifo que recebe dois parametros, pilha e iten, onde a pilha éa
lista que queremos adicionar o iten . E dentro dessa funcdo, usamos 0 método append(iten) (que também é uma
funcgao) para adicionar o item no final da lista, que é o topo da pilha.

def adicionar_lifo(pilha, item):
return pilha.append(item)

Depois criamos outra fungcdo chamada remover 1ifo que recebe apenas um parametro, que é a pilha que
queremos remover um item do topo (desempilhar). Assim, fazemos o uso do método pop() e ndo passamos

Moddulo 3 - Estrutura de dados e algoritmos

https://docs.python.org/pt-br/3/tutorial/datastructures.html
https://panda.ime.usp.br/pensepy/static/pensepy/09-Listas/listas.html

nenhum parametro, pois por padrao, o método pop() ja repassa o indice -1 e remove o Ultimo item da lista, que é
justamente o comportamento que esperamos dentro de uma pilha: remover o ultimo item adicionado.

def remover_lifo(pilha):
return pilha.pop()

Podemos representar o uso desse cédigo em Python:

Define uma fungdo para adicionar a pilha
usando o método append()
def adicionar_lifo(pilha, item):

return pilha.append(item)

Define uma fungdo para remover da pilha
usando o método pop()
def remover_lifo(pilha):

return pilha.pop()

Inicializa um array (lista) com alguns itens
pilha_pratos = ['P1', 'P2', 'P3', 'P4']

Invoca a funcdo para adicionar um item diretamente na pilha
adicionar_lifo(pilha_pratos, 'P5'")
print(pilha_pratos) # Resultado: ['P1',6 'P2', 'P3', 'P4', 'P5']

Invoca a funcdo para remover um item diretamente da pilha
remover_lifo(pilha_pratos)
print(pilha_pratos) # Resultado: ['P1', 'P2', 'P3', 'P4']

Filas (Queues) - FIFO

A Fila € uma estrutura de dados bem conhecida, basta vocé pensar em uma fila de banco, onde o primeiro a
chegar é o primeiro a ser atendido.

Esse fluxo de “primeiro item a entrar na pilha, é o primeiro item a sair da fila" é
chamado de FIFO, que é a sigla para First In, First Out.

Traduzindo do inglés para o portugués, entendemos:
Primeiro a entrar, Primeiro a sair.

Exemplo visual:

Remove 4_‘ r Insere

1 2 3 n n+l

Para que possamos manipular uma lista (array) de forma que se comporte como uma fila, podemos definir o
codigo abaixo.

Primeiro criamos uma fungao chamada adicionar fifo que recebe dois parametros, piiha € iten, ONnde a pilha € a
lista que queremos adicionar o iten . E dentro dessa fungao, usamos o0 método append(item) (que também é uma
fungao) para adicionar o item no final da lista, que é o topo da pilha.

Moddulo 3 - Estrutura de dados e algoritmos

def adicionar_fifo(fila, item):
return fila.append(item)

Depois criamos outra funcdo chamada remover 1ifo pop quUe recebe apenas um parametro, que é a rila que
queremos remover um item do inicio. Assim, fazemos o uso do método pop() € passamos o parametro com indice
0 (zero), sendo pop(e) , para que remova o primeiro item da lista que esta na posicao inicial (0 - zero). Assim,
temos o comportamento que esperamos dentro de uma fila: remover o primeiro item adicionado.

def remover_fifo_pop(fila):
return fila.pop(0)

Agora, a titulo de aprendizado, podemos testar uma outra forma de remover um item da fila. Para isso vamos
definir uma fungcado chamada remover fifo que também ira receber apenas um parametro, que é a rila que
queremos remover um item do inicio. Entretanto, nao utilizaremos o método pop() € sim o conceito de acessar um
periodo de indices dentro de uma lista (array), utilizando o operador : (dois pontos), como aprendemos
anteriormente.

S6 que desse modo, nao podemos simplesmente
invocar a fungao, precisamos também redefinir a
nossa variavel riia para o resultado retornado (por
meio do return da fungao), pois assim definiremos
o novo valor da fila de forma explicita.

Diferentemente do pop() , que manipula uma lista
de forma implicita, ja que atua diretamente na
variavel onde estd a fila sem precisar reatribui-la.

def remover_fifo(fila):
return fila[1:]

fila_banco = remover_fifo(fila_banco)

Podemos representar o uso desse cédigo em Python:

Define uma funcdo para adicionar a fila
usando o método append()
def adicionar_fifo(fila, item):

return fila.append(item)

Define uma fungdo para remover da fila
usando o retorno de um periodo
def remover_fifo(fila):

return fila[1:]

Define uma fungdo para remover da fila
usando o método pop()
def remover_fifo_pop(fila):

return fila.pop(0)

Inicializa um array (lista) com alguns itens
fila_banco = ["Jodo", "Karol", "Davi", "Raquel"]

Invoca a fungdo para adicionar um item diretamente na fila

Moddulo 3 - Estrutura de dados e algoritmos

adicionar_fifo(fila_banco, "Sarah")
print(fila_banco) # Resultado: ["Jodo", "Karol", "Davi", "Raquel", "Sarah"]

Invoca a funcdo para remover um item diretamente da fila
remover_fifo_pop(fila_banco)
print(fila_banco) # Resultado: ["Karol", "Davi", "Raquel", "Sarah"]

Invoca a funcdo para remover um item da fila
retornando uma nova fila
fila_banco = remover_fifo(fila_banco)

print(fila_banco) # Resultado: ["Davi", "Raquel", "Sarah"]

Estruturas de repeticao e estruturas de dados

Vamos falar sobre estruturas de repeticdo em Python, como 0 for € 0 while , € COMO Usa-los para iterar sobre
listas e dicionarios.

1. Estrutura de Repeticao ror com Listas:

O ror € 0Otimo para percorrer cada item em uma lista. Imagine que temos uma lista de frutas e queremos imprimir
cada uma delas:

frutas = ["macd", "banana", "laranja", "uva"]

for fruta in frutas:
print(fruta)

Neste exemplo, o ror percorre alista rrutas e a variavel rruta recebe cada elemento da lista em cada iteracao. O
resultado sera a impressao de cada fruta.

2. Estrutura de Repeticdo ror com Dicionarios:

Agora, vamos usar o for para iterar sobre um dicionario. Suponha que temos um dicionario de contatos e
queremos imprimir cada nome e numero de telefone:

contatos = {
"Alice": "123-456-7890",
"Bob": "987-654-3210",
"Carol": "555-123-4567"

for nome, telefone in contatos.items():
print(f"{nome}: {telefone}")

Neste caso, o ror percorre o dicionario, e a variavel none recebe a chave (nome do contato) e a variavel teiefone
recebe o valor (numero de telefone) em cada iteragao.

3. Estrutura de Repeticdo wniic com Listas:

O while € Util quando vocé precisa repetir algo enquanto uma condi¢ao for verdadeira. Vamos usar um exemplo
de lista para encontrar um item especifico:

nomes = ["Alice", "Bob", "Carol", "David"]
nome_procurado = "Carol"
encontrado = False

indice = 0

while not encontrado and indice < len(nomes):

Moddulo 3 - Estrutura de dados e algoritmos

if nomes[indice] == nome_procurado:
encontrado = True

else:
indice += 1

if encontrado:

print(f"{nome_procurado} foi encontrado na posicado {indice}")
else:

print(f"{nome_procurado} ndo foi encontrado na lista")

Neste caso, usamos um loop while para verificar se 0 nome procurado esta na lista. O loop continua até encontrar
0 nome ou percorrer toda a lista.

4. Estrutura de Repeticdo whize com Dicionarios (Parte 2):

Digamos que temos um dicionario de produtos e seus precos, e queremos encontrar o produto mais caro.
Usaremos um loop while para fazer isso.

produtos = {
"Macad": 2.50,
"Banana": 1.50,
"Laranja": 2.00,
"Abacaxi": 3.50,

produto_mais_caro = None
preco_mais_caro = 0

while produtos:
produto, preco = produtos.popitem()
if preco > preco_mais_caro:
produto_mais_caro = produto
preco_mais_caro = preco

print(f"0 produto mais caro é '{produto_mais_caro}' com preco de R${preco_mais_caro:.2

£3")

Neste exemplo, estamos usando um loop while para percorrer o dicionario produtos . A cada iteragdo, verificamos
se o preco do produto atual € maior do que o prego do produto mais caro encontrado até agora. Se for,
atualizamos a variavel produto mais caro com 0 nome do produto e a variavel preco mais caro COM O Prego
correspondente.

No final do loop, imprimimos o produto mais caro encontrado.

Espero que esses exemplos tenham sido Uteis e faceis de entender! As estruturas de repeticao ror € while S30
fundamentais para percorrer e manipular dados em Python.

Complexidade de um algoritmo

Notacao Big O

A notagao "Big O" (ou "O Grande O") é uma forma de descrever o desempenho ou eficiéncia de um algoritmo. Ela
€ usada para entender o quao rapido um algoritmo cresce a medida que a quantidade de dados de entrada
aumenta. Vou explicar de forma simples:

Big O é como medimos o "quao rapido" ou "quao lento" um algoritmo é.

Médulo 3 - Estrutura de dados e algoritmos 10

A ideia principal é responder a pergunta: "Se eu dobrar a quantidade de dados que estou processando, o tempo
que meu algoritmo leva para rodar também dobrara? Ou ele levard mais tempo?"

Aqui estdo alguns exemplos simples para ajudar a entender:

Time to complete (in operations)

Size of input data

1. O(1) - Constante: Isso significa que o algoritmo leva o mesmo tempo, ndo importa o tamanho dos dados. E
como se o tempo fosse constante, ndo importa quao grande seja o problema. Um exemplo disso é acessar um
elemento em uma lista pelo indice - isso leva um tempo constante, ndo importa o tamanho da lista.

2. O(n) - Linear: Isso significa que o tempo de execucao do algoritmo cresce na mesma proporgao que o
tamanho dos dados. Se vocé tem uma lista com 100 elementos e leva 10 segundos para processa-la, se vocé
tiver uma lista com 200 elementos, levara cerca de 20 segundos.

3. 0(n?) - Quadratico: Isso significa que o tempo de execugao do algoritmo cresce quadrado em relagao ao
tamanho dos dados. Se vocé tem uma lista com 100 elementos e leva 10 segundos para processa-la, se vocé
tiver uma lista com 200 elementos, levara cerca de 40 segundos (10 x 4).

4. O(log n) - Logaritmico: Este € um dos mais eficientes em termos de tempo. Significa que, a medida que a
quantidade de dados (n) aumenta, o tempo de execugao do algoritmo aumenta, mas ndo de forma linear. Em
vez disso, ele cresce de acordo com o logaritmo do tamanho dos dados. Isso faz com que algoritmos com
essa notagao sejam muito rapidos para grandes conjuntos de dados.

Um exemplo classico é a busca binaria em uma lista ordenada. Imagine ter uma lista de 1.000 numeros
ordenados e vocé quer encontrar um numero especifico. Usando a busca binaria, vocé divide a lista pela
metade repetidamente, o que significa que vocé elimina metade dos elementos a cada passo. Isso é muito
mais rapido do que verificar um por um.

5. O(nlog n) - Linearitmico: Este € um pouco menos eficiente que o O(log n), mas ainda é muito rapido.
Significa que o tempo de execugao do algoritmo cresce linearmente com os dados, mas também é
multiplicado pelo logaritmo do tamanho dos dados. Isso € comum em algoritmos de classificacao eficientes,
como o algoritmo QuickSort e o algoritmo MergeSort. Quando vocé classifica uma grande lista de dados,
esses algoritmos dividem a lista em partes menores, classificam cada parte e, em seguida, mesclam essas
partes classificadas. O logaritmo entra na divisdo e mesclagem das partes, tornando o algoritmo geral muito
rapido, mesmo para grandes conjuntos de dados.

A ideia é escolher algoritmos com notagdes "Big O" menores sempre que possivel, porque eles sdo mais
eficientes. Por exemplo, um algoritmo O(n) € mais eficiente do que um O(n?).

Pense no "Big O" como uma maneira de comparar algoritmos e escolher o mais eficiente para o seu problema.
Quanto menor a notacdo "Big O", mais rapido o algoritmo sera em relagdo ao tamanho dos dados.

Eu aproveito para deixar algumas video-aulas publicas no YouTube para auxiliar na compreensao:

Modulo 3 - Estrutura de dados e algoritmos

n

. . . ESCALA ‘
NOTAGAO BIG-O COMO CLASSIFICAR A COMPLEXIDADE DE UM CODIGO? VOCE PRECISA SABER! OU DESABA? &

Sua aplicacao escala ou desaba? Saiba que um simples trecho de codigo é capaz de destruir a performance da
sua aplicagao. BIG-O

D https://youtu.be/KjJwx-AB4KI?si=FdFqG76tHXLTINMS VOCE PRECISA SABER!

O que é a Notagao Big O em Algoritmos

O que é a Notacao Big O em Algoritmos

Neste video explico o que é a Notacdo Big O, empregada para realizar comparagao de

D https://www.youtube.com/watch?v=JTIpS1WIgXg&ab_channel=BésonTreinamentos

Aproveite para seguir os canais @&

Literatura: Além do analdgico

bert C. Martin

Entendendo | C6 d i g (o) Li m p (o]

Habilidades Praticas do Agile Software .

|

|

|

~ algoritmos
| 1 _

|

|

vilustrado paray

[
Wiw' (7

C. Martin

Caso vocé tenha curiosidade, separei alguns livros para que vocé possa ja deixar na sua rotina de estudos e
aprender um pouco mais sobre os assuntos que abordamos até aqui.

O livro “Entendendo Algoritmos” é bem amigavel, cada pagina possui uma ilustracdo dos temas e explicagoes
abordadas, tornando a experiéncia bem interativa. E o livro "Cédigo Limpo" é padrdo, um pouco mais denso por
nao ter ilustragdes, mas & uma leitura essencial para quem quer ser um programador.

Dica: se vocé nao tem costume de ler, tente tornar a leitura um habito; separe 10 minutinhos todos os dias, leia de
2 a 3 paginas e faca as suas anotagdes sempre que possivel. O importante é exercitar a leitura, aprendendo um
pouco a cada dia.

Links para compra pela Amazon

Entendendo Algoritmos: Um Guia llustrado Para Programadores e Outros Curiosos 1:‘1‘:"[
Compre online Entendendo Algoritmos: Um Guia llustrado Para Programadores e Outros
Curiosos, de Bhargava, Aditya Y. na Amazon. Frete GRATIS em milhares de produtos com o

Amazon Prime. Encontre diversos livros escritos por Bhargava, Aditya Y. com 6timos precos.
@ https://a.co/d/24U1Ncj

Moddulo 3 - Estrutura de dados e algoritmos

12

https://youtu.be/KjJwx-AB4KI?si=FdFqG76tHxLTINMS
https://www.youtube.com/watch?v=JTIpS1WlgXg&ab_channel=B%C3%B3sonTreinamentos
https://a.co/d/24U1Ncj

Cédigo limpo: Habilidades praticas do Agile Software Cédigo Limpo

o
ol
8
£
g
£
3|
&l
i

Compre online Caodigo limpo: Habilidades praticas do Agile Software, de Martin, Robert C. na
Amazon. Frete GRATIS em milhares de produtos com o Amazon Prime. Encontre diversos livros
escritos por Martin, Robert C. com 6timos pregos.

a https://a.co/d/dA7VLGR

Projeto - Hands on .

Sistema Bancario

Neste exemplo, vamos criar um algoritmo que simule as principais operagoes de um sistema bancario. Para isso,
utilizaremos todos os conhecimentos aprendidos até aqui, aplicando estruturas de repetigao e estruturas de
dados na pratica para resolver o nosso problema. As interagdes com o programa irdo acontecer por meio de
inputs que serao informados a cada etapa.

Introducao
Crie uma logica para simular um fluxo de um sistema bancario.
Esse programa devera ter:

1. Um menu com selegao de operagao

2. Criacao de contas

3. Remocao de contas

4. Listagem de todas as contas criadas

5. Adicionar saldo / Remover saldo

6. Transferir valor entre contas

7. Consultar saldo de uma conta especifica

As contas devem ser armazenadas em uma lista e cada conta deve ser
um diciondrio (chave-valor) contendo as seguintes chaves:

1. numero_conta

2. saldo_conta

» Aprofundamento os conhecimentos

Quebra de linha com \n

m Para “quebrar uma linha" enquanto estamos programando, por exemplo, ao utilizar um print() ou um
input() , onde passamos uma mensagem como parametro, nés pode utilizar do \n (contra-barra n) para
sinalizar uma "quebra de linha".

Formatacao especial de numeros utilizando template strings

Em Python, o :.2r é usado em f-strings para formatar numeros como ponto flutuante (nimeros com casas
decimais). Vou explicar cada parte:

Modulo 3 - Estrutura de dados e algoritmos

https://a.co/d/dA7vLGR

e O . indica que estamos fazendo uma formatagao especial.
e O .2 indica que queremos duas casas decimais apds o ponto decimal.
o O r significa que estamos formatando um numero de ponto flutuante (ou seja, um numero real).

Agora, vamos ver um exemplo para entender melhor. Suponha que temos uma variavel preco com o valor 1e.s56789
e queremos formata-la com duas casas decimais:

preco = 10.56789
mensagem = f"O preco é: {preco:.2f} reais"
print(mensagem)

Aqui, a f-string (preco:.2r} vai formatar o valor da variavel preco como 10.57, arredondando para duas casas
decimais.

Isso é util quando vocé precisa exibir nimeros de forma mais legivel, como em precos, porcentagens ou medidas
com casas decimais.

Para saber mais sobre o uso de f-strings (template strings) e formacao especial:

O IITHN

Manipulagao de Strings com f-strings no Python

Aprenda a manipular strings em Python de um jeito facil e descomplicado com f-strings!

© ARTIGO - Blog

MANIPULAGAO DE STRINGS
U https://pythonacademy.com.br/blog/f-strings-no-python COME-STRINGS NO PYTHON

Por-Vinilus . em 18/0212021

string — Common string operations

Source code: Lib/string.py String constants: The constants defined in this module are: Custom
String Formatting: The built-in string class provides the ability to do complex variable
substitutions ...

A https://docs.python.org/3/library/string.html#format-specification-mini-language

Python 3's F-Strings: An Improved String Formatting Syntax (Guide) — Real Python

As of Python 3.6, f-strings are a great new way to format strings. Not only are they more
readable, more concise, and less prone to error than other ways of formatting, but they are also
faster! By the end of this article, you will learn how and why to start using f-strings today.

@ https://realpython.com/python-f-strings/

B Escrevendo codigo
v Coddigo - Parte 1

Vamos criar a base do programa com menu.

print(">>> Bem vindo ao sistema Bancario <<<")
programa_ativo = True
while programa_ativo == True:
print ("\n### Menu ###")
print("® - Sair")
numero_operacao = input("Selecione a operacdo que deseja realizar:\n>>> ")

if numero_operacao == "0":
print("\nSistema encerrado.")

programa_ativo = False

else:
print("\nOperacdo invalida.")

Modulo 3 - Estrutura de dados e algoritmos

https://pythonacademy.com.br/blog/f-strings-no-python
https://docs.python.org/3/library/string.html#format-specification-mini-language
https://realpython.com/python-f-strings/

v Cddigo - Parte 2

Vamos reestruturar o nosso codigo. Adicionar mais duas operacdes e trocar a hossa condi¢cao do WHILE para
algo mais simples, objetivo e funcional.

contas = []
print(">>> Bem vindo ao sistema Bancario <<<")

while True:
print ("\n### Menu ###")
print("e - Sair")
print("1 - Criar uma nova conta")
print("2 - Remover uma conta')
numero_operacao = input("Selecione a operacdo que deseja realizar:\n>>> ")

if numero_operacao == "0":
print("\nSistema encerrado.")
break

Operacdo 1 - Criar uma nova conta
elif numero_operacao == "1":
verificador_conta_existe = False
dados_nova_conta = {}
dados_nova_conta['numero_conta'] = input("Digite o numero da nova conta:\n>>> ")

for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True

if verificador_conta_existe == True:
print("\nO numero da conta j& existe. Tente novamente.")
else:

dados_nova_conta['saldo_conta'] = float(input("Digite o saldo da nova conta:\n>>
contas.append(dados_nova_conta)
print("\nOperacao efetuada com sucesso.")

Operacdo 2 - Remover uma conta
elif numero_operacao == "2":
numero_conta = input("Digite o numero da conta para remover:\n>>> ")
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
conta_encontrada = True
contas.remove(conta_em_consulta)
print("\nOperacdo efetuada com sucesso.")
if not conta_encontrada:
print("\n0 numero da conta ndo existe. Tente novamente.")

Operacdo invalida

else:
print("\nOperacdo invalida.")

v Coddigo - Parte 3

Vamos reestruturar (refatorar) o nosso cédigo e passar a usar fungoes.

Médulo 3 - Estrutura de dados e algoritmos 15

contas = []

def criar_conta():
verificador_conta_existe = False
dados_nova_conta = {}
dados_nova_conta['numero_conta'] = input('Digite o numero da nova conta:\n>>> ')

for conta_em_consulta in contas:

if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True
break
if verificador_conta_existe == True:
print('\n0 numero da conta ja existe. Tente novamente.')
else:

dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>
contas.append(dados_nova_conta)
print('\nOperacdo efetuada com sucesso.')

def remover_conta():
numero_conta = input('Digite o numero da conta para remover:\n>>> ')
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
conta_encontrada = True
contas.remove(conta_em_consulta)
print('\nOperacdo efetuada com sucesso.')
break
if not conta_encontrada:
print('\n0 numero da conta ndo existe. Tente novamente.')

print(">>> Bem vindo ao sistema Bancario <<<")

while True:
print ("\n### Menu ###")
print("e@ - Sair")
print("1 - Criar uma nova conta")
print("2 - Remover uma conta")
numero_operacao = input("Selecione a operacao que deseja realizar:\n>>> ")

if numero_operacao == "0":
print("\nSistema encerrado.")
break

Operacdo 1 - Criar uma nova conta
elif numero_operacao == "1":
criar_conta()

Operacdo 2 - Remover uma conta
elif numero_operacao == "2":

remover_conta()

Operacdo invalida

Médulo 3 - Estrutura de dados e algoritmos 16

else:
print("\nOperacdo invalida.")

v Cadigo - Parte 4

Vamos criar mais uma operacao: Listar Contas.
contas = []
def criar_conta():

verificador_conta_existe = False
dados_nova_conta = {}

dados_nova_conta['numero_conta'] = input('Digite o numero da nova conta:\n>>> ')

for conta_em_consulta in contas:

if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True
break
if verificador_conta_existe == True:
print('\n0 numero da conta ja existe. Tente novamente.')
else:

dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

contas.append(dados_nova_conta)
print('\nOperacdo efetuada com sucesso.')

def remover_conta():
numero_conta = input('Digite o numero da conta para remover:\n>>> ')
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
conta_encontrada = True
contas.remove(conta_em_consulta)
print('\nOperacdo efetuada com sucesso.')
break
if not conta_encontrada:
print('\n0O numero da conta ndo existe. Tente novamente.')

def listar_contas():

if len(contas) == 0:

print('\nNd&o h& contas cadastradas.')
else:

index = 1

for conta_em_consulta in contas:
if conta_em_consulta['saldo_conta'] >= 0:

status = 'Positivo'
else:
status = 'Negativo'

format string - f string

print(f"{index} - Numero da conta: {conta_em_consulta['numero_conta']}

index += 1

print(">>> Bem vindo ao sistema Bancario <<<")

while True:

Moddulo 3 - Estrutura de dados e algoritmos

| Saldo d

17

print ("\n### Menu ###")

print("e@ - Sair")

print("1 - Criar uma nova conta")

print("2 - Remover uma conta")

print("3 - Listar todas as contas")

numero_operacao = input("Selecione a operacdo que deseja realizar:\n>>> ")

if numero_operacao == "0":
print("\nSistema encerrado.")
break

Operacdo 1 - Criar uma nova conta
elif numero_operacao == "1":
criar_conta()

Operacdo 2 - Remover uma conta
elif numero_operacao == "2":
remover_conta()

Operacdo 3 - Listar todas as contas
elif numero_operacao == "3":
listar_contas()

Operacdo invéalida
else:
print("\nOperacdo invalida.")

v Cddigo - Parte 5
Agora, vamos adicionar mais duas operagoes:
Adicionar Saldo (crédito) e Remover Saldo (débito)

contas = []

def criar_conta():
verificador_conta_existe = False
dados_nova_conta = {}
dados_nova_conta['numero_conta'] = input('Digite o numero da nova conta:\n>>> ')

for conta_em_consulta in contas:

if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True
break
if verificador_conta_existe == True:
print('\n0 numero da conta ja existe. Tente novamente.')
else:

dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>
contas.append(dados_nova_conta)
print('\nOperacdo efetuada com sucesso.')

def remover_conta():
numero_conta = input('Digite o numero da conta para remover:\n>>> ')
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:

Moddulo 3 - Estrutura de dados e algoritmos

conta_encontrada = True
contas.remove(conta_em_consulta)
print('\nOperacdo efetuada com sucesso.')
break
if not conta_encontrada:
print('\n0 numero da conta ndo existe. Tente novamente.')

def listar_contas():

if len(contas) == 0:

print('\nNdo ha contas cadastradas.')
else:

index = 1

for conta_em_consulta in contas:
if conta_em_consulta['saldo_conta'] >= 0:

status = 'Positivo'
else:
status = 'Negativo'

format string - f string

print(f"{index} - NUmero da conta: {conta_em_consulta['numero_conta']}

index += 1

def adicionar_saldo_em_conta():
numero_conta = input("Digite o numero da conta:\n>>> ")
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_credito = float(input("Digite o valor do crédito:\n>>> R$ "))
if valor_credito < 0:
print("\nValores negativos ndo s@o aceitos. Tente novamente.")
return
else:
conta_em_consulta['saldo_conta'] += valor_credito
print("\nOperacédo efetuada com sucesso.")
return
print("\nO numero da conta ndo foi encontrado. Tente novamente.")

def remover_saldo_em_conta():
numero_conta = input("Digite o numero da conta:\n>>> ")
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_debito = float(
input("Digite o valor do débito:\n>>> R$ "))
if valor_debito < 0:
print("\nValores negativos ndo sdo aceitos. Tente novamente.")

return
else:
conta_em_consulta['saldo_conta'] -= valor_debito
print("\nOperacdo efetuada com sucesso.")
return

print("\nO numero da conta ndo foi encontrado. Tente novamente.")
print(">>> Bem vindo ao sistema Bancario <<<")

while True:
print ("\n### Menu ###")

Moddulo 3 - Estrutura de dados e algoritmos

| Saldo d

print("e
print("1
print("2
print("3
print("4
print("5

Sair")

Criar uma nova conta")
Remover uma conta")

Listar todas as contas")
Adicionar saldo (creditar)")
Remover saldo (debitar)")

numero_operacao = input("Selecione a operacdo que deseja realizar:\n>>> ")

if numero_operacao == "0":
print("\nSistema encerrado.")

break

Operagdo 1 - Criar uma nova conta
elif numero_operacao == "1":
criar_conta()

Operagdo 2 - Remover uma conta
elif numero_operacao == "2":
remover_conta()

Operacdo 3 - Listar todas as contas
elif numero_operacao == "3":
listar_contas()

Operacdo 4 - Crédito
elif numero_operacao == "4":
adicionar_saldo_em_conta()

Operacdo 5 - Débito
elif numero_operacao == "5":
remover_saldo_em_conta()

Operacdo invalida

else:

print("\nOperacdo invalida.")

v Cddigo - Parte 6

Vamos criar a operagao de Transferir Saldo entre Contas

contas = []

def criar_conta():
verificador_conta_existe = False
dados_nova_conta = {}
dados_nova_conta['numero_conta'] = input('Digite o numero da nova conta:\n>>> ')

for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True

break

if verificador_conta_existe == True:
print('\n0 numero da conta ja existe. Tente novamente.')

else:

dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

Médulo 3 - Estrutura de dados e algoritmos 20

contas.append(dados_nova_conta)
print('\nOperacdo efetuada com sucesso.')

def remover_conta():
numero_conta = input('Digite o numero da conta para remover:\n>>> ')
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
conta_encontrada = True
contas.remove(conta_em_consulta)
print('\nOperacdo efetuada com sucesso.')
break
if not conta_encontrada:
print('\n0 numero da conta ndo existe. Tente novamente.')

def listar_contas():

if len(contas) == 0:

print('\nNao h& contas cadastradas.')
else:

index = 1

for conta_em_consulta in contas:
if conta_em_consulta['saldo_conta'] >= 0:

status = 'Positivo'
else:
status = 'Negativo'

format string - f string
print(f"{index} - NUumero da conta: {conta_em_consulta['numero_conta']} | Saldo d
index += 1

def adicionar_saldo_em_conta():
numero_conta = input('Digite o numero da conta:\n>>> ')
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_credito = float(input('Digite o valor do crédito:\n>>> R$ '))
if valor_credito < 0:
print('\nValores negativos ndo sdo aceitos. Tente novamente.')
return
else:
conta_em_consulta['saldo_conta'] += valor_credito
print('\nOperacdo efetuada com sucesso.')
return
print('\n0 numero da conta ndo foi encontrado. Tente novamente.')

def remover_saldo_em_conta():
numero_conta = input('Digite o numero da conta:\n>>> ')
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_debito = float(input('Digite o valor do débito:\n>>> R$ '))
if valor_debito < O:
print('\nValores negativos ndo sao aceitos. Tente novamente.')

return
else:
conta_em_consulta['saldo_conta'] -= valor_debito
print('\nOperacdo efetuada com sucesso.')
return

Médulo 3 - Estrutura de dados e algoritmos 21

print('\nO numero da conta ndo foi encontrado. Tente novamente.')

def transferir_saldo_entre_contas():
conta_partida = input('Digite o numero da sua conta:\n>>> ')
verificador_etapa = 0
Procura a primeira conta
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == conta_partida:
verificador_etapa = 1
conta_destino = input('Digite o numero da conta destino:\n>>> ')

Verifica se é uma transferencia para a mesma conta
if conta_destino != conta_partida:
Procura a segunda conta
for conta_destino_em_consulta in contas:
if conta_destino_em_consulta['numero_conta'] == conta_destino:

verificador_etapa = 3

valor_transferencia = float(input('Digite o valor da transferéncia:\n>>> R

Verifica se o valor é negativo

if valor_transferencia < 0:
print('\nN&o é possivel transferir um valor negativo.')
break

Verifica se o saldo é suficiente

elif valor_transferencia > conta_em_consulta['saldo_conta']:
print('\nN&o é possivel transferir um valor maior que o seu saldo.')
break

else:
conta_em_consulta['saldo_conta'] -= valor_transferencia
conta_destino_em_consulta['saldo_conta'] += valor_transferencia
print('\nOperacdo efetuada com sucesso.')
break

print()

else:

verificador_etapa = 2
break

if verificador_etapa ==

print('\nA sua conta ndo foi encontrada. Tente novamente.')
elif verificador_etapa == 1:

print('\nA conta de destino ndo foi encontrada. Tente novamente.')
elif verificador_etapa ==

print('\nNao é possivel transferir dinheiro para a mesma conta.')

print(">>> Bem vindo ao sistema Bancario <<<")

while True:

print("\n### Menu ###")

print ("o
print("1
print("2
print("3
print("4
print("5
print("6

Sair")

Criar uma nova conta")

Remover uma conta")

Listar todas as contas")
Adicionar saldo (creditar)")
Remover saldo (debitar)")
Transferir saldo entre contas")

numero_operacao = input("Selecione a operacdo que deseja realizar:\n>>> ")

Moddulo 3 - Estrutura de dados e algoritmos

if numero_operacao == "0":
print("\nSistema encerrado.")
break

Operagdo 1 - Criar uma nova conta
elif numero_operacao == "1":
criar_conta()

Operacdo 2 - Remover uma conta
elif numero_operacao == "2":
remover_conta()

Operacdo 3 - Listar todas as contas
elif numero_operacao == "3":
listar_contas()

Operacdo 4 - Crédito
elif numero_operacao == "4":
adicionar_saldo_em_conta()

Operacdo 5 - Débito
elif numero_operacao == "5":
remover_saldo_em_conta()

Operacdo 6 - Transferir entre contas
elif numero_operacao == "6":
transferir_saldo_entre_contas()

Operacdo invalida
else:
print("\nOperacdo invalida.")

v Cddigo - Parte 7
Por fim, vamos criar a operagao de Consultar Saldo.

contas = []

def criar_conta():
verificador_conta_existe = False
dados_nova_conta = {}
dados_nova_conta['numero_conta'] = input('Digite o numero da nova conta:\n>>> ')

for conta_em_consulta in contas:

if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:
verificador_conta_existe = True
break
if verificador_conta_existe == True:
print('\nO numero da conta ja existe. Tente novamente.')
else:

dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>
contas.append(dados_nova_conta)
print('\nOperacdo efetuada com sucesso.')

Médulo 3 - Estrutura de dados e algoritmos 23

def remover_conta():
numero_conta = input('Digite o numero da conta para remover:\n>>> ')
conta_encontrada = False
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
conta_encontrada = True
contas.remove(conta_em_consulta)
print('\nOperacdo efetuada com sucesso.')
break
if not conta_encontrada:
print('\n0 numero da conta ndo existe. Tente novamente.')

def listar_contas():

if len(contas) == 0:

print('\nNao ha contas cadastradas.')
else:

index = 1

for conta_em_consulta in contas:
if conta_em_consulta['saldo_conta'] >= 0:

status = 'Positivo'
else:
status = 'Negativo'

format string - f string
print(f"{index} - Numero da conta: {conta_em_consulta['numero_conta']}
index += 1

def adicionar_saldo_em_conta():
numero_conta = input('Digite o numero da conta:\n>>> ')
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_credito = float(input('Digite o valor do crédito:\n>>> R$ '))
if valor_credito < 0O:
print('\nValores negativos ndo sdo aceitos. Tente novamente.')
return
else:
conta_em_consulta['saldo_conta'] += valor_credito
print('\nOperacdo efetuada com sucesso.')
return
print('\n0O numero da conta ndo foi encontrado. Tente novamente.')

def remover_saldo_em_conta():
numero_conta = input('Digite o numero da conta:\n>>> ')
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == numero_conta:
valor_debito = float(input('Digite o valor do débito:\n>>> R$ '))
if valor_debito < 0:
print('\nValores negativos ndo s@o aceitos. Tente novamente.')

return
else:
conta_em_consulta['saldo_conta'] -= valor_debito
print('\nOperacdo efetuada com sucesso.')
return

print('\n0 numero da conta ndo foi encontrado. Tente novamente.')

def transferir_saldo_entre_contas():

Moddulo 3 - Estrutura de dados e algoritmos

| Saldo d

24

conta_partida = input('Digite o numero da sua conta:\n>>> ')
verificador_etapa = 0
Procura a primeira conta
for conta_em_consulta in contas:
if conta_em_consulta['numero_conta'] == conta_partida:
verificador_etapa = 1
conta_destino = input('Digite o numero da conta destino:\n>>> ')
Verifica se é uma transferencia para a mesma conta
if conta_destino != conta_partida:
Procura a segunda conta
for conta_destino_em_consulta in contas:
if conta_destino_em_consulta['numero_conta'] == conta_destino:
verificador_etapa = 3
valor_transferencia = float(input('Digite o valor da transferéncia:\n>>> R
Verifica se o valor é negativo
if valor_transferencia < 0:
print('\nNd&o é possivel transferir um valor negativo.')
break
Verifica se o saldo é suficiente
elif valor_transferencia > conta_em_consulta['saldo_conta']:
print('\nNao é possivel transferir um valor maior que o seu saldo.')
break
else:
conta_em_consulta['saldo_conta'] -= valor_transferencia
conta_destino_em_consulta['saldo_conta'] += valor_transferencia
print('\nOperacdo efetuada com sucesso.')
break

print()

else:
verificador_etapa = 2
break

if verificador_etapa ==

print('\nA sua conta ndo foi encontrada. Tente novamente.')
elif verificador_etapa ==

print('\nA conta de destino ndo foi encontrada. Tente novamente.')
elif verificador_etapa ==

print('\nN&o é possivel transferir dinheiro para a mesma conta.')

def consultar_saldo_de_conta():
numero_conta = input('Digite o numero da conta para consultar o saldo:\n>>> ')
for conta_em_consulta in contas:

if conta_em_consulta['numero_conta'] == numero_conta:
if conta_em_consulta['saldo_conta'] >= 0:
status = 'Positivo'
else:
status = 'Negativo'
print(f"\n0O saldo é: R$ {conta_em_consulta['saldo_conta']:.2f} ({status})")
return

print('\nO numero da conta ndo foi encontrado. Tente novamente.')

print(">>> Bem vindo ao sistema Bancéario <<<")

while True:

Moddulo 3 - Estrutura de dados e algoritmos

25

print ("\n### Menu ###")

print("e@ - Sair")

print("1 - Criar uma nova conta")

print("2 - Remover uma conta")

print("3 - Listar todas as contas")

print("4 - Adicionar saldo (creditar)")

print("5 - Remover saldo (debitar)")

print("6 - Transferir valor entre contas")

print("7 - Consultar saldo de uma conta")

numero_operacao = input('Selecione a operacdo que deseja realizar:\n>>> ')

if numero_operacao == "0":
print('\nSistema encerrado.')
break

Operacdo 1 - Criar uma nova conta
elif numero_operacao == "1":
criar_conta()

Operacdo 2 - Remover uma conta
elif numero_operacao == "2":
remover_conta()

Operacdo 3 - Listar todas as contas
elif numero_operacao == "3":
listar_contas()

Operagdo 4 - Adicionar saldo
elif numero_operacao == "4":
adicionar_saldo_em_conta()

Operacdo 5 - Remover saldo
elif numero_operacao == "5":
remover_saldo_em_conta()

Operacdo 6 - Transferir valor entre contas
elif numero_operacao == "6":
transferir_saldo_entre_contas()

Operagdo 7 - Consultar saldo de uma conta
elif numero_operacao == "7":
consultar_saldo_de_conta()

Operacdo invalida
else:
print('\nOperacdo invalida.')

Préximo médulo 32,
Muito conteudo, né?

Caso tenha ficado alguma duvida, aproveite para revisar a aula e ndo esqueca de responder aos exercicios deste
maodulo.

Agora, no proximo médulo vamos falar sobre como “Gerenciar o seu codigo com maestria”, isso significa que
aprenderemos sobre como podemos utilizar o Git para organizar o nosso cédigo e armazena-lo dentro de

Moddulo 3 - Estrutura de dados e algoritmos

plataformas com o GitHub.

Nessa etapa ja iremos expor o que criamos até aqui para o mundo, colocando na Internet os seus primeiros
codigos/projetos que servirao de portfolio desde ja! Espero que esteja ansioso para aprender mais. Até a préxima!

Bibliografia

Estrutura de Dados e Algoritmos

C0Os-121
Estrutura de Dados e Algoritmos
2° Semestre de 2009

https://www.cos.ufrj.br/~rfarias/cos121/pilhas.html

Estrutura de Dados e Algoritmos

C0Os-121
Estrutura de Dados e Algoritmos
2° Semestre de 2009

https://www.cos.ufrj.br/~rfarias/cos121/filas.html

Moddulo 3 - Estrutura de dados e algoritmos

27

https://www.cos.ufrj.br/~rfarias/cos121/pilhas.html
https://www.cos.ufrj.br/~rfarias/cos121/filas.html

