
Módulo 3 - Estrutura de dados e algoritmos 1

3️⃣
Módulo 3 - Estrutura de dados e algoritmos
Fala, dev!

Neste módulo, vamos aprofundar nossos conhecimentos em estruturas de dados e algoritmos, dois pilares
fundamentais para qualquer programador. Vamos explorar esses conceitos de forma didática e prática.
Preparado? Vamos lá!

O que são estruturas de dados?
As estruturas de dados são como a chave para organizar o caos no mundo da programação. Imagine que você é
o administrador de uma biblioteca gigante com milhares de livros. Como você organizaria todos esses livros para
que qualquer pessoa pudesse encontrar o que procura facilmente? É para resolver esses problemas que nós
podemos utilizar as Estruturas de Dados.

No computador, podemos fazer algo parecido. Quando temos muitos pedaços de informação, como números ou
nomes, colocamos eles em “caixinhas especiais” chamadas de Estruturas de Dados. Ou seja, são como
ferramentas que ajudam a organizar informações para serem acessadas e manipuladas de maneira eficiente.

Agora vou te dar alguns exemplos:

1. Fila da Padaria (Fila - Queue): Você já esteve em
uma padaria onde as pessoas formam uma fila
para comprar pães e bolos? Essa é uma fila na
vida real, que funciona exatamente como uma
Estrutura de Dados chamada "Queue" (Fila). A
primeira pessoa que chega é a primeira a ser
atendida.

2. Agenda de Contatos (Lista - Array): A agenda de
contatos no seu celular é um exemplo de uma lista
(array). Cada contato é um item na lista, e você
pode acessá-los por posição, assim como na
estante de livros que mencionamos anteriormente.

Módulo 3 - Estrutura de dados e algoritmos 2

3. Dicionário (Dicionário - Hashmap): Pense em um
dicionário físico onde você procura palavras e
suas definições. No mundo digital, um exemplo é o
mecanismo de busca na internet, como o Google.
Você digita uma palavra-chave (como "receitas de
bolo") e obtém uma lista de resultados
relacionados, como um dicionário onde você
encontra informações relevantes.

4. Redes Sociais (Grafo - Graph): Redes sociais
como o Facebook ou o Instagram são como um
grande grafo, outra Estrutura de Dados. Os perfis
são os nós (ou vértices) e as amizades ou
seguidores são as arestas (ou conexões) que ligam
esses nós. Isso permite que as redes sociais
identifiquem quem é amigo de quem e mostrem
seu conteúdo para as pessoas certas.

5. Playlist de Música (Lista Encadeada - Linked
List): Algumas playlists de música são criadas com
uma Estrutura de Dados chamada "Linked List"
(Lista Encadeada). Cada música está ligada à
próxima, como uma corrente, permitindo que você
avance ou retroceda facilmente na lista de
reprodução.

6. Caixa de Emails (Pilha - Stack): Imagine sua caixa
de entrada de e-mail como uma pilha de cartas. A
última carta que você recebeu está sempre no
topo da pilha. Quando você lê ou remove uma
carta, é como desempilhar a última. É por isso que
você lê e-mails na ordem em que são recebidos -
é uma pilha.

Com certeza você já se deparou com os exemplos acima no seu cotidiano, e agora tem o conhecimento de como
essas informações são estruturadas.

Array (Matriz)
Um array em linguagem de programação é uma estrutura de dados que nos permite armazenar uma coleção
ordenada de elementos sob um único nome. Esses elementos podem ser números, palavras, objetos, ou qualquer
outro tipo de dado que a linguagem de programação suporte.

Módulo 3 - Estrutura de dados e algoritmos 3

A principal característica de um array é a sua capacidade de organizar os elementos em posições numeradas,
começando geralmente do zero. Isso facilita o acesso e a manipulação desses elementos, uma vez que você
pode se referir a eles pelo índice da posição em que estão armazenados.

🎲 Para inicializar uma variável do tipo Array, podemos iniciar sem itens: array = []

Ou com alguns itens de início:
array = ["texto", 123, 4.56, True]

E esses itens podem ser de diversos tipos (
string, número inteiro, número flutuante, booleano).

🧩 Para acessar uma posição do array, nós utilizamos uma contagem a partir do 0 (zero). Isso é comum ao
lidar com linguagens de programação, pois o computador “conta de 0 a 10 e não de 1 a 10”, como nós
humanos.

Por isso que no
Python, ao utilizarmos a estrutura de repetição for valor in range (10) , sem dizer para função
range () que deve começar do 1 (um), ele nos traz um resultado a partir do 0 (zero).

Por exemplo, se você tiver um array de números inteiros chamado idades , poderá acessar o primeiro elemento
usando idades[0] , o segundo usando idades[1] , e assim por diante.

Em Python:

idades = [10, 15, 16, 20]

print(idades[0]) # 10

print(idades[1]) # 15

print(idades[2]) # 16

print(idades[3]) # 20

print(idades[4]) # Ao acessar uma posição inexistente, isso resultará em ERROR

Não apenas podemos acessar um elemento específico em uma lista, mas também podemos recuperar um período
de itens consecutivos dentro da lista. Para fazer isso, utilizamos o operador : (dois pontos) para definir o início e
o fim do intervalo que desejamos acessar. Isso é particularmente útil quando queremos trabalhar com uma parte
específica de uma lista sem a necessidade de percorrê-la inteira.

Vamos explorar isso em um exemplo prático de código para entender melhor. Suponha que temos uma lista
chamada numeros e queremos acessar os elementos do índice 2 ao índice 5.

Em Python:

numeros = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

intervalo = numeros[2:6]

print(intervalo) # Resultado: [2, 3, 4, 5]

Neste exemplo, numeros[2:6] nos dará uma nova lista contendo os elementos dos índices 2, 3, 4 e 5 da lista
numeros . O intervalo começa no índice 2 e vai até, mas não inclui, o índice 6.

Essa capacidade de acessar períodos de itens em listas é valiosa para tarefas como filtrar dados específicos,
criar subconjuntos de informações e muito mais. Portanto, lembre-se do operador : ao trabalhar com listas em
Python, pois ele pode simplificar bastante seu código e tornar suas operações mais eficientes."

👉 Tamanho / Length (comprimento)

Módulo 3 - Estrutura de dados e algoritmos 4

📐 len()

O método len() em Python é uma função embutida (built-in) que nos permite determinar o
comprimento ou o número de elementos em uma estrutura de dados, como uma lista, uma string,
uma tupla, entre outras.

Listas: Para listas, o len () retorna o número de elementos contidos na lista.

Em Python:

frutas = ["maçã", "banana", "laranja"]

tamanho = len(frutas) # Resultado: 3

Retorna 3, pois há 3 elementos na lista.

Strings: Para strings, o len () retorna o número de caracteres na string.

Em Python:

texto = "Olá, mundo!"

tamanho = len(texto) # Resultado: 12

Retorna 12, pois há 12 caracteres na string.

O método len () é útil quando você precisa saber o tamanho de uma estrutura de dados
em seu programa. Pode ser usado em loops, condicionais e em várias outras situações
em que você precisa tomar decisões com base na quantidade de elementos ou
caracteres presentes em uma variável.

👉 Métodos / funções de manipulação de lista (array) em Python
As listas (arrays) são estruturas de dados que permitem armazenar e manipular coleções de elementos. Vamos
explorar alguns métodos importantes que nos ajudam a trabalhar com listas de maneira eficiente:

➕ append()

O método append () é utilizado para adicionar um elemento ao final de uma lista.

Por exemplo, se temos uma lista (array) chamada frutas e queremos adicionar a fruta "maçã" ao final da lista,
podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]

frutas.append("maçã")

print(frutas) # Resultado: ["banana", "laranja", "uva", "maçã"]

Módulo 3 - Estrutura de dados e algoritmos 5

➖ pop(index)

O método pop () é usado para remover um elemento de uma lista com base no índice fornecido e,
opcionalmente, retornar o valor removido.

index é o valor referente ao índice que queremos remover. Caso deixemos vazio, ele irá passar o
índice -1 como padrão e remover o último item da lista (array).

Por exemplo, se quisermos remover o elemento "laranja" da lista frutas , podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]

fruta_removida = frutas.pop(1)

print(frutas) # Resultado: ["banana", "uva"]

print(fruta_removida) # Resultado: "laranja"

⏪ reverse()

O método reverse () inverte a ordem dos elementos em uma lista (array).

Em Python:

frutas = ["banana", "laranja", "uva"]

frutas.reverse()

print(frutas) # Resultado: ["uva", "laranja", "banana"]

🧹 clear()

O método clear () é usado para remover todos os elementos de uma lista, deixando-a vazia.

Por exemplo, se temos uma lista (array) chamada frutas já com alguns itens e queremos limpar/excluir todos os
elementos, podemos fazer o seguinte.

Em Python:

frutas = ["banana", "laranja", "uva"]

frutas.clear()

print(frutas) # Resultado: []

Arrays são amplamente utilizados na programação para armazenar e processar dados de maneira eficiente. Eles
são úteis quando você precisa lidar com conjuntos de informações semelhantes, como uma lista de nomes, notas
de alunos, ou registros de vendas. É uma maneira poderosa de organizar e trabalhar com dados em programas de
computador.

Para saber mais, eu vou deixar dois links de um material externo para consulta:

Módulo 3 - Estrutura de dados e algoritmos 6

5. Estruturas de dados
Esse capítulo descreve algumas coisas que você já aprendeu em detalhes e adiciona algumas
coisas novas também. Mais sobre listas: O tipo de dado lista tem ainda mais métodos. Aqui estão
apresentado...

https://docs.python.org/pt-br/3/tutorial/datastructures.html

Listas — Como pensar como um Cientista da Computação: Edição Interativa em Python
Uma lista (list) em Python é uma sequência ou coleção ordenada
de valores. Cada valor na lista é identificado por um índice. O
valores que formam uma lista são chamados elementos ou itens.

https://panda.ime.usp.br/pensepy/static/pensepy/09-Listas/listas.html

Agora, vamos entender como podemos manipular o Array para resolver diversos problemas. 👇

Pilhas (Stacks) - LIFO
A Pilha é uma estrutura de dados bastante simples, basta você pensar em uma pilha de pratos, onde o último
prato colocado, é o primeiro a ser retirado da pilha.

Esse fluxo de “último item a entrar na pilha, é o primeiro item a sair da fila” é chamado
de LIFO, que é a sigla para Last In, First Out.

Traduzindo do inglês para o português, entendemos:
Primeiro a entrar, Último a sair.

Exemplo visual:

Para que possamos manipular uma lista (array) de forma que se comporte como uma pilha, podemos definir o
código abaixo.

Primeiro criamos uma função chamada adicionar_lifo que recebe dois parâmetros, pilha e item , onde a pilha é a
lista que queremos adicionar o item . E dentro dessa função, usamos o método append(item) (que também é uma
função) para adicionar o item no final da lista, que é o topo da pilha.

def adicionar_lifo(pilha, item):

 return pilha.append(item)

Depois criamos outra função chamada remover_lifo que recebe apenas um parâmetro, que é a pilha que
queremos remover um item do topo (desempilhar). Assim, fazemos o uso do método pop() e não passamos

A pilha pode ser representada como na imagem acima, onde temos uma lista organizada de baixo para cima. Isso é, todos os itens
adicionados na lista, vão para o topo, sendo empilhados. Agora, ao desempilhar, vamos buscar o último item adicionado, aquele que

está no topo da lista.

https://docs.python.org/pt-br/3/tutorial/datastructures.html
https://panda.ime.usp.br/pensepy/static/pensepy/09-Listas/listas.html

Módulo 3 - Estrutura de dados e algoritmos 7

nenhum parâmetro, pois por padrão, o método pop() já repassa o índice -1 e remove o último item da lista, que é
justamente o comportamento que esperamos dentro de uma pilha: remover o último item adicionado.

def remover_lifo(pilha):

 return pilha.pop()

Podemos representar o uso desse código em Python:

Define uma função para adicionar a pilha

usando o método append()

def adicionar_lifo(pilha, item):

 return pilha.append(item)

Define uma função para remover da pilha

usando o método pop()

def remover_lifo(pilha):

 return pilha.pop()

Inicializa um array (lista) com alguns itens

pilha_pratos = ['P1', 'P2', 'P3', 'P4']

Invoca a função para adicionar um item diretamente na pilha

adicionar_lifo(pilha_pratos, 'P5')

print(pilha_pratos) # Resultado: ['P1', 'P2', 'P3', 'P4', 'P5']

Invoca a função para remover um item diretamente da pilha

remover_lifo(pilha_pratos)

print(pilha_pratos) # Resultado: ['P1', 'P2', 'P3', 'P4']

Filas (Queues) - FIFO
A Fila é uma estrutura de dados bem conhecida, basta você pensar em uma fila de banco, onde o primeiro a
chegar é o primeiro a ser atendido.

Esse fluxo de “primeiro item a entrar na pilha, é o primeiro item a sair da fila” é
chamado de FIFO, que é a sigla para First In, First Out.

Traduzindo do inglês para o português, entendemos:
Primeiro a entrar, Primeiro a sair.

Exemplo visual:

Para que possamos manipular uma lista (array) de forma que se comporte como uma fila, podemos definir o
código abaixo.

Primeiro criamos uma função chamada adicionar_fifo que recebe dois parâmetros, pilha e item , onde a pilha é a
lista que queremos adicionar o item . E dentro dessa função, usamos o método append(item) (que também é uma
função) para adicionar o item no final da lista, que é o topo da pilha.

Módulo 3 - Estrutura de dados e algoritmos 8

def adicionar_fifo(fila, item):

 return fila.append(item)

Depois criamos outra função chamada remover_lifo_pop que recebe apenas um parâmetro, que é a fila que
queremos remover um item do início. Assim, fazemos o uso do método pop() e passamos o parâmetro com índice
0 (zero), sendo pop(0) , para que remova o primeiro item da lista que está na posição inicial (0 - zero). Assim,
temos o comportamento que esperamos dentro de uma fila: remover o primeiro item adicionado.

def remover_fifo_pop(fila):

 return fila.pop(0)

Agora, a título de aprendizado, podemos testar uma outra forma de remover um item da fila. Para isso vamos
definir uma função chamada remover_fifo que também irá receber apenas um parâmetro, que é a fila que
queremos remover um item do início. Entretanto, não utilizaremos o método pop() e sim o conceito de acessar um
período de índices dentro de uma lista (array), utilizando o operador : (dois pontos), como aprendemos
anteriormente.

Só que desse modo, não podemos simplesmente
invocar a função, precisamos também redefinir a
nossa variável fila para o resultado retornado (por
meio do return da função), pois assim definiremos
o novo valor da fila de forma explícita.

Diferentemente do pop() , que manipula uma lista
de forma implícita, já que atua diretamente na
variável onde está a fila sem precisar reatribui-la.

def remover_fifo(fila):

 return fila[1:]

fila_banco = remover_fifo(fila_banco)

Podemos representar o uso desse código em Python:

Define uma função para adicionar a fila

usando o método append()

def adicionar_fifo(fila, item):

 return fila.append(item)

Define uma função para remover da fila

usando o retorno de um período

def remover_fifo(fila):

 return fila[1:]

Define uma função para remover da fila

usando o método pop()

def remover_fifo_pop(fila):

 return fila.pop(0)

Inicializa um array (lista) com alguns itens

fila_banco = ["João", "Karol", "Davi", "Raquel"]

Invoca a função para adicionar um item diretamente na fila

Módulo 3 - Estrutura de dados e algoritmos 9

adicionar_fifo(fila_banco, "Sarah")

print(fila_banco) # Resultado: ["João", "Karol", "Davi", "Raquel", "Sarah"]

Invoca a função para remover um item diretamente da fila

remover_fifo_pop(fila_banco)

print(fila_banco) # Resultado: ["Karol", "Davi", "Raquel", "Sarah"]

Invoca a função para remover um item da fila

retornando uma nova fila

fila_banco = remover_fifo(fila_banco)

print(fila_banco) # Resultado: ["Davi", "Raquel", "Sarah"]

Estruturas de repetição e estruturas de dados
Vamos falar sobre estruturas de repetição em Python, como o for e o while , e como usá-los para iterar sobre
listas e dicionários.

1. Estrutura de Repetição for com Listas:

O for é ótimo para percorrer cada item em uma lista. Imagine que temos uma lista de frutas e queremos imprimir
cada uma delas:

frutas = ["maçã", "banana", "laranja", "uva"]

for fruta in frutas:

 print(fruta)

Neste exemplo, o for percorre a lista frutas e a variável fruta recebe cada elemento da lista em cada iteração. O
resultado será a impressão de cada fruta.

2. Estrutura de Repetição for com Dicionários:

Agora, vamos usar o for para iterar sobre um dicionário. Suponha que temos um dicionário de contatos e
queremos imprimir cada nome e número de telefone:

contatos = {

"Alice": "123-456-7890",

"Bob": "987-654-3210",

"Carol": "555-123-4567"

}

for nome, telefone in contatos.items():

 print(f"{nome}: {telefone}")

Neste caso, o for percorre o dicionário, e a variável nome recebe a chave (nome do contato) e a variável telefone
recebe o valor (número de telefone) em cada iteração.

3. Estrutura de Repetição while com Listas:

O while é útil quando você precisa repetir algo enquanto uma condição for verdadeira. Vamos usar um exemplo
de lista para encontrar um item específico:

nomes = ["Alice", "Bob", "Carol", "David"]

nome_procurado = "Carol"

encontrado = False

indice = 0

while not encontrado and indice < len(nomes):

Módulo 3 - Estrutura de dados e algoritmos 10

 if nomes[indice] == nome_procurado:

 encontrado = True

 else:

 indice += 1

if encontrado:

 print(f"{nome_procurado} foi encontrado na posição {indice}")

else:

 print(f"{nome_procurado} não foi encontrado na lista")

Neste caso, usamos um loop while para verificar se o nome procurado está na lista. O loop continua até encontrar
o nome ou percorrer toda a lista.

4. Estrutura de Repetição while com Dicionários (Parte 2):

Digamos que temos um dicionário de produtos e seus preços, e queremos encontrar o produto mais caro.
Usaremos um loop while para fazer isso.

produtos = {

 "Maçã": 2.50,

 "Banana": 1.50,

 "Laranja": 2.00,

 "Abacaxi": 3.50,

}

produto_mais_caro = None

preco_mais_caro = 0

while produtos:

 produto, preco = produtos.popitem()

 if preco > preco_mais_caro:

 produto_mais_caro = produto

 preco_mais_caro = preco

print(f"O produto mais caro é '{produto_mais_caro}' com preço de R${preco_mais_caro:.2

f}")

Neste exemplo, estamos usando um loop while para percorrer o dicionário produtos . A cada iteração, verificamos
se o preço do produto atual é maior do que o preço do produto mais caro encontrado até agora. Se for,
atualizamos a variável produto_mais_caro com o nome do produto e a variável preco_mais_caro com o preço
correspondente.

No final do loop, imprimimos o produto mais caro encontrado.

Espero que esses exemplos tenham sido úteis e fáceis de entender! As estruturas de repetição for e while são
fundamentais para percorrer e manipular dados em Python.

Complexidade de um algoritmo
Notação Big O
A notação "Big O" (ou "O Grande O") é uma forma de descrever o desempenho ou eficiência de um algoritmo. Ela
é usada para entender o quão rápido um algoritmo cresce à medida que a quantidade de dados de entrada
aumenta. Vou explicar de forma simples:

Big O é como medimos o "quão rápido" ou "quão lento" um algoritmo é.

Módulo 3 - Estrutura de dados e algoritmos 11

A ideia principal é responder a pergunta: "Se eu dobrar a quantidade de dados que estou processando, o tempo
que meu algoritmo leva para rodar também dobrará? Ou ele levará mais tempo?"

Aqui estão alguns exemplos simples para ajudar a entender:

1. O(1) - Constante: Isso significa que o algoritmo leva o mesmo tempo, não importa o tamanho dos dados. É
como se o tempo fosse constante, não importa quão grande seja o problema. Um exemplo disso é acessar um
elemento em uma lista pelo índice - isso leva um tempo constante, não importa o tamanho da lista.

2. O(n) - Linear: Isso significa que o tempo de execução do algoritmo cresce na mesma proporção que o
tamanho dos dados. Se você tem uma lista com 100 elementos e leva 10 segundos para processá-la, se você
tiver uma lista com 200 elementos, levará cerca de 20 segundos.

3. O(n²) - Quadrático: Isso significa que o tempo de execução do algoritmo cresce quadrado em relação ao
tamanho dos dados. Se você tem uma lista com 100 elementos e leva 10 segundos para processá-la, se você
tiver uma lista com 200 elementos, levará cerca de 40 segundos (10 x 4).

4. O(log n) - Logarítmico: Este é um dos mais eficientes em termos de tempo. Significa que, à medida que a
quantidade de dados (n) aumenta, o tempo de execução do algoritmo aumenta, mas não de forma linear. Em
vez disso, ele cresce de acordo com o logaritmo do tamanho dos dados. Isso faz com que algoritmos com
essa notação sejam muito rápidos para grandes conjuntos de dados.

Um exemplo clássico é a busca binária em uma lista ordenada. Imagine ter uma lista de 1.000 números
ordenados e você quer encontrar um número específico. Usando a busca binária, você divide a lista pela
metade repetidamente, o que significa que você elimina metade dos elementos a cada passo. Isso é muito
mais rápido do que verificar um por um.

5. O(n log n) - Linearítmico: Este é um pouco menos eficiente que o O(log n), mas ainda é muito rápido.
Significa que o tempo de execução do algoritmo cresce linearmente com os dados, mas também é
multiplicado pelo logaritmo do tamanho dos dados. Isso é comum em algoritmos de classificação eficientes,
como o algoritmo QuickSort e o algoritmo MergeSort. Quando você classifica uma grande lista de dados,
esses algoritmos dividem a lista em partes menores, classificam cada parte e, em seguida, mesclam essas
partes classificadas. O logaritmo entra na divisão e mesclagem das partes, tornando o algoritmo geral muito
rápido, mesmo para grandes conjuntos de dados.

A ideia é escolher algoritmos com notações "Big O" menores sempre que possível, porque eles são mais
eficientes. Por exemplo, um algoritmo O(n) é mais eficiente do que um O(n²).

Pense no "Big O" como uma maneira de comparar algoritmos e escolher o mais eficiente para o seu problema.
Quanto menor a notação "Big O", mais rápido o algoritmo será em relação ao tamanho dos dados.

Eu aproveito para deixar algumas video-aulas públicas no YouTube para auxiliar na compreensão:

Módulo 3 - Estrutura de dados e algoritmos 12

NOTAÇÃO BIG-O COMO CLASSIFICAR A COMPLEXIDADE DE UM CÓDIGO? VOCÊ PRECISA SABER!
Sua aplicação escala ou desaba? Saiba que um simples trecho de código é capaz de destruir a performance da
sua aplicação.

https://youtu.be/KjJwx-AB4KI?si=FdFqG76tHxLTINMS

O que é a Notação Big O em Algoritmos
O que é a Notação Big O em Algoritmos

Neste vídeo explico o que é a Notação Big O, empregada para realizar comparação de

https://www.youtube.com/watch?v=JTIpS1WlgXg&ab_channel=BósonTreinamentos

Aproveite para seguir os canais 😉

Literatura: Além do analógico

Caso você tenha curiosidade, separei alguns livros para que você possa já deixar na sua rotina de estudos e
aprender um pouco mais sobre os assuntos que abordamos até aqui.

O livro “Entendendo Algoritmos” é bem amigável, cada página possui uma ilustração dos temas e explicações
abordadas, tornando a experiência bem interativa. E o livro “Código Limpo” é padrão, um pouco mais denso por
não ter ilustrações, mas é uma leitura essencial para quem quer ser um programador.

Dica: se você não tem costume de ler, tente tornar a leitura um hábito; separe 10 minutinhos todos os dias, leia de
2 a 3 páginas e faça as suas anotações sempre que possível. O importante é exercitar a leitura, aprendendo um
pouco a cada dia.

Links para compra pela Amazon

Entendendo Algoritmos: Um Guia Ilustrado Para Programadores e Outros Curiosos
Compre online Entendendo Algoritmos: Um Guia Ilustrado Para Programadores e Outros
Curiosos, de Bhargava, Aditya Y. na Amazon. Frete GRÁTIS em milhares de produtos com o
Amazon Prime. Encontre diversos livros escritos por Bhargava, Aditya Y. com ótimos preços.

https://a.co/d/24U1Ncj

https://youtu.be/KjJwx-AB4KI?si=FdFqG76tHxLTINMS
https://www.youtube.com/watch?v=JTIpS1WlgXg&ab_channel=B%C3%B3sonTreinamentos
https://a.co/d/24U1Ncj

Módulo 3 - Estrutura de dados e algoritmos 13

Código limpo: Habilidades práticas do Agile Software
Compre online Código limpo: Habilidades práticas do Agile Software, de Martin, Robert C. na
Amazon. Frete GRÁTIS em milhares de produtos com o Amazon Prime. Encontre diversos livros
escritos por Martin, Robert C. com ótimos preços.

https://a.co/d/dA7vLGR

Projeto - Hands on 👋💻

Sistema Bancário
Neste exemplo, vamos criar um algoritmo que simule as principais operações de um sistema bancário. Para isso,
utilizaremos todos os conhecimentos aprendidos até aqui, aplicando estruturas de repetição e estruturas de
dados na prática para resolver o nosso problema. As interações com o programa irão acontecer por meio de
inputs que serão informados a cada etapa.

Introdução
Crie uma lógica para simular um fluxo de um sistema bancário.

Esse programa deverá ter:

1. Um menu com seleção de operação

2. Criação de contas

3. Remoção de contas

4. Listagem de todas as contas criadas

5. Adicionar saldo / Remover saldo

6. Transferir valor entre contas

7. Consultar saldo de uma conta específica

As contas devem ser armazenadas em uma lista e cada conta deve ser
um dicionário (chave-valor) contendo as seguintes chaves:

1. numero_conta

2. saldo_conta

🚩 Aprofundamento os conhecimentos

Quebra de linha com \n

🏁 Para “quebrar uma linha” enquanto estamos programando, por exemplo, ao utilizar um print() ou um
input() , onde passamos uma mensagem como parâmetro, nós pode utilizar do \n (contra-barra n) para
sinalizar uma “quebra de linha”.

Formatação especial de números utilizando template strings
Em Python, o :.2f é usado em f-strings para formatar números como ponto flutuante (números com casas
decimais). Vou explicar cada parte:

https://a.co/d/dA7vLGR

Módulo 3 - Estrutura de dados e algoritmos 14

O : indica que estamos fazendo uma formatação especial.

O .2 indica que queremos duas casas decimais após o ponto decimal.

O f significa que estamos formatando um número de ponto flutuante (ou seja, um número real).

Agora, vamos ver um exemplo para entender melhor. Suponha que temos uma variável preco com o valor 10.56789
e queremos formatá-la com duas casas decimais:

preco = 10.56789

mensagem = f"O preço é: {preco:.2f} reais"

print(mensagem)

Aqui, a f-string {preco:.2f} vai formatar o valor da variável preco como 10.57 , arredondando para duas casas
decimais.

Isso é útil quando você precisa exibir números de forma mais legível, como em preços, porcentagens ou medidas
com casas decimais.

Para saber mais sobre o uso de f-strings (template strings) e formação especial:

Manipulação de Strings com f-strings no Python
Aprenda a manipular strings em Python de um jeito fácil e descomplicado com f-strings!

https://pythonacademy.com.br/blog/f-strings-no-python

string — Common string operations
Source code: Lib/string.py String constants: The constants defined in this module are: Custom
String Formatting: The built-in string class provides the ability to do complex variable
substitutions ...

https://docs.python.org/3/library/string.html#format-specification-mini-language

Python 3's F-Strings: An Improved String Formatting Syntax (Guide) – Real Python
As of Python 3.6, f-strings are a great new way to format strings. Not only are they more
readable, more concise, and less prone to error than other ways of formatting, but they are also
faster! By the end of this article, you will learn how and why to start using f-strings today.

https://realpython.com/python-f-strings/

💻 Escrevendo código
Código - Parte 1
Vamos criar a base do programa com menu.

print(">>> Bem vindo ao sistema Bancário <<<")

programa_ativo = True

while programa_ativo == True:

 print("\n### Menu ###")

 print("0 - Sair")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 programa_ativo = False

 else:

 print("\nOperação invalida.")

https://pythonacademy.com.br/blog/f-strings-no-python
https://docs.python.org/3/library/string.html#format-specification-mini-language
https://realpython.com/python-f-strings/

Módulo 3 - Estrutura de dados e algoritmos 15

Código - Parte 2
Vamos reestruturar o nosso código. Adicionar mais duas operações e trocar a nossa condição do WHILE para
algo mais simples, objetivo e funcional.

contas = []

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

 print("\n### Menu ###")

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input("Digite o número da nova conta:\n>>> ")

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 if verificador_conta_existe == True:

 print("\nO número da conta já existe. Tente novamente.")

 else:

 dados_nova_conta['saldo_conta'] = float(input("Digite o saldo da nova conta:\n>>

 contas.append(dados_nova_conta)

 print("\nOperacao efetuada com sucesso.")

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 numero_conta = input("Digite o número da conta para remover:\n>>> ")

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print("\nOperação efetuada com sucesso.")

 if not conta_encontrada:

 print("\nO número da conta não existe. Tente novamente.")

 # Operação inválida

 else:

 print("\nOperação invalida.")

Código - Parte 3
Vamos reestruturar (refatorar) o nosso código e passar a usar funções.

Módulo 3 - Estrutura de dados e algoritmos 16

contas = []

def criar_conta():

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input('Digite o número da nova conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 break

 if verificador_conta_existe == True:

 print('\nO número da conta já existe. Tente novamente.')

 else:

 dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

 contas.append(dados_nova_conta)

 print('\nOperação efetuada com sucesso.')

def remover_conta():

 numero_conta = input('Digite o número da conta para remover:\n>>> ')

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print('\nOperação efetuada com sucesso.')

 break

 if not conta_encontrada:

 print('\nO número da conta não existe. Tente novamente.')

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

 print("\n### Menu ###")

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 criar_conta()

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 remover_conta()

 # Operação inválida

Módulo 3 - Estrutura de dados e algoritmos 17

 else:

 print("\nOperação invalida.")

Código - Parte 4
Vamos criar mais uma operação: Listar Contas.

contas = []

def criar_conta():

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input('Digite o número da nova conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 break

 if verificador_conta_existe == True:

 print('\nO número da conta já existe. Tente novamente.')

 else:

 dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

 contas.append(dados_nova_conta)

 print('\nOperação efetuada com sucesso.')

def remover_conta():

 numero_conta = input('Digite o número da conta para remover:\n>>> ')

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print('\nOperação efetuada com sucesso.')

 break

 if not conta_encontrada:

 print('\nO número da conta não existe. Tente novamente.')

def listar_contas():

 if len(contas) == 0:

 print('\nNão há contas cadastradas.')

 else:

 index = 1

 for conta_em_consulta in contas:

 if conta_em_consulta['saldo_conta'] >= 0:

 status = 'Positivo'

 else:

 status = 'Negativo'

 # format string - f string

 print(f"{index} - Número da conta: {conta_em_consulta['numero_conta']} | Saldo d

 index += 1

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

Módulo 3 - Estrutura de dados e algoritmos 18

 print("\n### Menu ###")

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 print("3 - Listar todas as contas")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 criar_conta()

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 remover_conta()

 # Operação 3 - Listar todas as contas

 elif numero_operacao == "3":

 listar_contas()

 # Operação inválida

 else:

 print("\nOperação invalida.")

Código - Parte 5
Agora, vamos adicionar mais duas operações:
Adicionar Saldo (crédito) e Remover Saldo (débito)

contas = []

def criar_conta():

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input('Digite o número da nova conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 break

 if verificador_conta_existe == True:

 print('\nO número da conta já existe. Tente novamente.')

 else:

 dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

 contas.append(dados_nova_conta)

 print('\nOperação efetuada com sucesso.')

def remover_conta():

 numero_conta = input('Digite o número da conta para remover:\n>>> ')

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

Módulo 3 - Estrutura de dados e algoritmos 19

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print('\nOperação efetuada com sucesso.')

 break

 if not conta_encontrada:

 print('\nO número da conta não existe. Tente novamente.')

def listar_contas():

 if len(contas) == 0:

 print('\nNão há contas cadastradas.')

 else:

 index = 1

 for conta_em_consulta in contas:

 if conta_em_consulta['saldo_conta'] >= 0:

 status = 'Positivo'

 else:

 status = 'Negativo'

 # format string - f string

 print(f"{index} - Número da conta: {conta_em_consulta['numero_conta']} | Saldo d

 index += 1

def adicionar_saldo_em_conta():

 numero_conta = input("Digite o número da conta:\n>>> ")

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_credito = float(input("Digite o valor do crédito:\n>>> R$ "))

 if valor_credito < 0:

 print("\nValores negativos não são aceitos. Tente novamente.")

 return

 else:

 conta_em_consulta['saldo_conta'] += valor_credito

 print("\nOperação efetuada com sucesso.")

 return

 print("\nO número da conta não foi encontrado. Tente novamente.")

def remover_saldo_em_conta():

 numero_conta = input("Digite o número da conta:\n>>> ")

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_debito = float(

 input("Digite o valor do débito:\n>>> R$ "))

 if valor_debito < 0:

 print("\nValores negativos não são aceitos. Tente novamente.")

 return

 else:

 conta_em_consulta['saldo_conta'] -= valor_debito

 print("\nOperação efetuada com sucesso.")

 return

 print("\nO número da conta não foi encontrado. Tente novamente.")

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

 print("\n### Menu ###")

Módulo 3 - Estrutura de dados e algoritmos 20

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 print("3 - Listar todas as contas")

 print("4 - Adicionar saldo (creditar)")

 print("5 - Remover saldo (debitar)")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 criar_conta()

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 remover_conta()

 # Operação 3 - Listar todas as contas

 elif numero_operacao == "3":

 listar_contas()

 # Operação 4 - Crédito

 elif numero_operacao == "4":

 adicionar_saldo_em_conta()

 # Operação 5 - Débito

 elif numero_operacao == "5":

 remover_saldo_em_conta()

 # Operação inválida

 else:

 print("\nOperação invalida.")

Código - Parte 6
Vamos criar a operação de Transferir Saldo entre Contas.

contas = []

def criar_conta():

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input('Digite o número da nova conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 break

 if verificador_conta_existe == True:

 print('\nO número da conta já existe. Tente novamente.')

 else:

 dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

Módulo 3 - Estrutura de dados e algoritmos 21

 contas.append(dados_nova_conta)

 print('\nOperação efetuada com sucesso.')

def remover_conta():

 numero_conta = input('Digite o número da conta para remover:\n>>> ')

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print('\nOperação efetuada com sucesso.')

 break

 if not conta_encontrada:

 print('\nO número da conta não existe. Tente novamente.')

def listar_contas():

 if len(contas) == 0:

 print('\nNão há contas cadastradas.')

 else:

 index = 1

 for conta_em_consulta in contas:

 if conta_em_consulta['saldo_conta'] >= 0:

 status = 'Positivo'

 else:

 status = 'Negativo'

 # format string - f string

 print(f"{index} - Número da conta: {conta_em_consulta['numero_conta']} | Saldo d

 index += 1

def adicionar_saldo_em_conta():

 numero_conta = input('Digite o número da conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_credito = float(input('Digite o valor do crédito:\n>>> R$ '))

 if valor_credito < 0:

 print('\nValores negativos não são aceitos. Tente novamente.')

 return

 else:

 conta_em_consulta['saldo_conta'] += valor_credito

 print('\nOperação efetuada com sucesso.')

 return

 print('\nO número da conta não foi encontrado. Tente novamente.')

def remover_saldo_em_conta():

 numero_conta = input('Digite o número da conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_debito = float(input('Digite o valor do débito:\n>>> R$ '))

 if valor_debito < 0:

 print('\nValores negativos não são aceitos. Tente novamente.')

 return

 else:

 conta_em_consulta['saldo_conta'] -= valor_debito

 print('\nOperação efetuada com sucesso.')

 return

Módulo 3 - Estrutura de dados e algoritmos 22

 print('\nO número da conta não foi encontrado. Tente novamente.')

def transferir_saldo_entre_contas():

 conta_partida = input('Digite o número da sua conta:\n>>> ')

 verificador_etapa = 0

 # Procura a primeira conta

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == conta_partida:

 verificador_etapa = 1

 conta_destino = input('Digite o número da conta destino:\n>>> ')

 # Verifica se é uma transferencia para a mesma conta

 if conta_destino != conta_partida:

 # Procura a segunda conta

 for conta_destino_em_consulta in contas:

 if conta_destino_em_consulta['numero_conta'] == conta_destino:

 verificador_etapa = 3

 valor_transferencia = float(input('Digite o valor da transferência:\n>>> R

 # Verifica se o valor é negativo

 if valor_transferencia < 0:

 print('\nNão é possível transferir um valor negativo.')

 break

 # Verifica se o saldo é suficiente

 elif valor_transferencia > conta_em_consulta['saldo_conta']:

 print('\nNão é possível transferir um valor maior que o seu saldo.')

 break

 else:

 conta_em_consulta['saldo_conta'] -= valor_transferencia

 conta_destino_em_consulta['saldo_conta'] += valor_transferencia

 print('\nOperação efetuada com sucesso.')

 break

 print()

 else:

 verificador_etapa = 2

 break

 if verificador_etapa == 0:

 print('\nA sua conta não foi encontrada. Tente novamente.')

 elif verificador_etapa == 1:

 print('\nA conta de destino não foi encontrada. Tente novamente.')

 elif verificador_etapa == 2:

 print('\nNão é possível transferir dinheiro para a mesma conta.')

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

 print("\n### Menu ###")

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 print("3 - Listar todas as contas")

 print("4 - Adicionar saldo (creditar)")

 print("5 - Remover saldo (debitar)")

 print("6 - Transferir saldo entre contas")

 numero_operacao = input("Selecione a operação que deseja realizar:\n>>> ")

Módulo 3 - Estrutura de dados e algoritmos 23

 if numero_operacao == "0":

 print("\nSistema encerrado.")

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 criar_conta()

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 remover_conta()

 # Operação 3 - Listar todas as contas

 elif numero_operacao == "3":

 listar_contas()

 # Operação 4 - Crédito

 elif numero_operacao == "4":

 adicionar_saldo_em_conta()

 # Operação 5 - Débito

 elif numero_operacao == "5":

 remover_saldo_em_conta()

 # Operação 6 - Transferir entre contas

 elif numero_operacao == "6":

 transferir_saldo_entre_contas()

 # Operação inválida

 else:

 print("\nOperação invalida.")

Código - Parte 7
Por fim, vamos criar a operação de Consultar Saldo.

contas = []

def criar_conta():

 verificador_conta_existe = False

 dados_nova_conta = {}

 dados_nova_conta['numero_conta'] = input('Digite o número da nova conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == dados_nova_conta['numero_conta']:

 verificador_conta_existe = True

 break

 if verificador_conta_existe == True:

 print('\nO número da conta já existe. Tente novamente.')

 else:

 dados_nova_conta['saldo_conta'] = float(input('Digite o saldo da nova conta:\n>>>

 contas.append(dados_nova_conta)

 print('\nOperação efetuada com sucesso.')

Módulo 3 - Estrutura de dados e algoritmos 24

def remover_conta():

 numero_conta = input('Digite o número da conta para remover:\n>>> ')

 conta_encontrada = False

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 conta_encontrada = True

 contas.remove(conta_em_consulta)

 print('\nOperação efetuada com sucesso.')

 break

 if not conta_encontrada:

 print('\nO número da conta não existe. Tente novamente.')

def listar_contas():

 if len(contas) == 0:

 print('\nNão há contas cadastradas.')

 else:

 index = 1

 for conta_em_consulta in contas:

 if conta_em_consulta['saldo_conta'] >= 0:

 status = 'Positivo'

 else:

 status = 'Negativo'

 # format string - f string

 print(f"{index} - Número da conta: {conta_em_consulta['numero_conta']} | Saldo d

 index += 1

def adicionar_saldo_em_conta():

 numero_conta = input('Digite o número da conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_credito = float(input('Digite o valor do crédito:\n>>> R$ '))

 if valor_credito < 0:

 print('\nValores negativos não são aceitos. Tente novamente.')

 return

 else:

 conta_em_consulta['saldo_conta'] += valor_credito

 print('\nOperação efetuada com sucesso.')

 return

 print('\nO número da conta não foi encontrado. Tente novamente.')

def remover_saldo_em_conta():

 numero_conta = input('Digite o número da conta:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 valor_debito = float(input('Digite o valor do débito:\n>>> R$ '))

 if valor_debito < 0:

 print('\nValores negativos não são aceitos. Tente novamente.')

 return

 else:

 conta_em_consulta['saldo_conta'] -= valor_debito

 print('\nOperação efetuada com sucesso.')

 return

 print('\nO número da conta não foi encontrado. Tente novamente.')

def transferir_saldo_entre_contas():

Módulo 3 - Estrutura de dados e algoritmos 25

 conta_partida = input('Digite o número da sua conta:\n>>> ')

 verificador_etapa = 0

 # Procura a primeira conta

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == conta_partida:

 verificador_etapa = 1

 conta_destino = input('Digite o número da conta destino:\n>>> ')

 # Verifica se é uma transferencia para a mesma conta

 if conta_destino != conta_partida:

 # Procura a segunda conta

 for conta_destino_em_consulta in contas:

 if conta_destino_em_consulta['numero_conta'] == conta_destino:

 verificador_etapa = 3

 valor_transferencia = float(input('Digite o valor da transferência:\n>>> R

 # Verifica se o valor é negativo

 if valor_transferencia < 0:

 print('\nNão é possível transferir um valor negativo.')

 break

 # Verifica se o saldo é suficiente

 elif valor_transferencia > conta_em_consulta['saldo_conta']:

 print('\nNão é possível transferir um valor maior que o seu saldo.')

 break

 else:

 conta_em_consulta['saldo_conta'] -= valor_transferencia

 conta_destino_em_consulta['saldo_conta'] += valor_transferencia

 print('\nOperação efetuada com sucesso.')

 break

 print()

 else:

 verificador_etapa = 2

 break

 if verificador_etapa == 0:

 print('\nA sua conta não foi encontrada. Tente novamente.')

 elif verificador_etapa == 1:

 print('\nA conta de destino não foi encontrada. Tente novamente.')

 elif verificador_etapa == 2:

 print('\nNão é possível transferir dinheiro para a mesma conta.')

def consultar_saldo_de_conta():

 numero_conta = input('Digite o número da conta para consultar o saldo:\n>>> ')

 for conta_em_consulta in contas:

 if conta_em_consulta['numero_conta'] == numero_conta:

 if conta_em_consulta['saldo_conta'] >= 0:

 status = 'Positivo'

 else:

 status = 'Negativo'

 print(f"\nO saldo é: R$ {conta_em_consulta['saldo_conta']:.2f} ({status})")

 return

 print('\nO número da conta não foi encontrado. Tente novamente.')

print(">>> Bem vindo ao sistema Bancário <<<")

while True:

Módulo 3 - Estrutura de dados e algoritmos 26

 print("\n### Menu ###")

 print("0 - Sair")

 print("1 - Criar uma nova conta")

 print("2 - Remover uma conta")

 print("3 - Listar todas as contas")

 print("4 - Adicionar saldo (creditar)")

 print("5 - Remover saldo (debitar)")

 print("6 - Transferir valor entre contas")

 print("7 - Consultar saldo de uma conta")

 numero_operacao = input('Selecione a operação que deseja realizar:\n>>> ')

 if numero_operacao == "0":

 print('\nSistema encerrado.')

 break

 # Operação 1 - Criar uma nova conta

 elif numero_operacao == "1":

 criar_conta()

 # Operação 2 - Remover uma conta

 elif numero_operacao == "2":

 remover_conta()

 # Operação 3 - Listar todas as contas

 elif numero_operacao == "3":

 listar_contas()

 # Operação 4 - Adicionar saldo

 elif numero_operacao == "4":

 adicionar_saldo_em_conta()

 # Operação 5 - Remover saldo

 elif numero_operacao == "5":

 remover_saldo_em_conta()

 # Operação 6 - Transferir valor entre contas

 elif numero_operacao == "6":

 transferir_saldo_entre_contas()

 # Operação 7 - Consultar saldo de uma conta

 elif numero_operacao == "7":

 consultar_saldo_de_conta()

 # Operação inválida

 else:

 print('\nOperação inválida.')

Próximo módulo 🔜
Muito conteúdo, né?

Caso tenha ficado alguma dúvida, aproveite para revisar a aula e não esqueça de responder aos exercícios deste
módulo.

Agora, no próximo módulo vamos falar sobre como “Gerenciar o seu código com maestria”, isso significa que
aprenderemos sobre como podemos utilizar o Git para organizar o nosso código e armazená-lo dentro de

Módulo 3 - Estrutura de dados e algoritmos 27

plataformas com o GitHub.

Nessa etapa já iremos expor o que criamos até aqui para o mundo, colocando na Internet os seus primeiros
códigos/projetos que servirão de portfólio desde já! Espero que esteja ansioso para aprender mais. Até a próxima!

Bibliografia

Estrutura de Dados e Algoritmos
COS-121
Estrutura de Dados e Algoritmos
2º Semestre de 2009
https://www.cos.ufrj.br/~rfarias/cos121/pilhas.html

Estrutura de Dados e Algoritmos
COS-121
Estrutura de Dados e Algoritmos
2º Semestre de 2009
https://www.cos.ufrj.br/~rfarias/cos121/filas.html

https://www.cos.ufrj.br/~rfarias/cos121/pilhas.html
https://www.cos.ufrj.br/~rfarias/cos121/filas.html

