18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificagdo do usuario | Alura - Cursos online de tecnologia

[o6
Tratamento de erros e notificacao do usuario

Transcricdo

Hoje, quando acessamos nossa aplicacdo sem que nossa API esteja rodando o que acontece? Vemos uma pagina com

apenas o menu com conteido em branco. Se abrirmos o console do Chrome vemos informacgdes mais detalhadas.

Deixar a pagina em branco pode suscitar muitas diividas no usuério a respeito do que esta acontecendo. E por isso que
precisamos exibir uma mensagem para que ele saiba que ndo foi possivel buscar as imagens e que ele pode tentar mais

tarde.

Aprendemos que toda promise possui no método then dois callbacks, funcdes que sdo chamadas em um tempo futuro.
O primeiro ¢ o callback de sucesso e o segundo de fracasso. Sendo assim, podemos alterar o componente Home desta

forma:

// alurapic/src/components/home/Home.vue
// cédigo anterior omitido
created() {

this.service = new FotoService(this.$resource);

this.service.lista()
.then(
fotos => this.fotos = fotos,
err => {
console.log(err); // logando o erro que veio do server para o desenvolvedor
this.mensagem = 'Nao foi possivel obter as fotos. Tenta mais tarde.';

1)

// cédigo posterior omitido

Se pararmos nosso servidor com a nossa API e recarregarmos nossa aplicacdo, vemos a mensagem de erro sendo

exibida. Funciona, mas a podemos aplicar uma solucdo ainda melhor.

Veja que em todos os lugares que o método lista de FotoService for chamado, teremos que logar a mensagem de erro
que veio do servidor, o que é uma boa pratica para em seguida definir a mensagem que desejamos exibir para o usudrio.
Essa mensagem ¢é importante, porque néao faz sentido mostrar o erro que veio do servidor para a tela dele, é uma

informacdo muita técnica que sé6 geraria mais confusao.

Entdo, podemos isolar o processo de logar a mensagem de erro do servidor e a mensagem de erro de alto nivel, isto &,
aquela feita para o usuario no préprio servico. A vantagem dessa abordagem é que todos os lugares que chamarem o

método lista n#o precisaram logar o erro e nem definir sua prépria mensagem de erro.

Alterando FotoService :

// alurapic/src/domain/foto/FotoService.js

export default class FotoService {

https://cursos.alura.com.br/course/vue-parte2/task/23677 1/3

18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificagdo do usuario | Alura - Cursos online de tecnologia

// cédigo anterior omitido
lista() {
return this._resource

.query()
.then(

res => res.json(),
err => {
console.log(err);
throw new Error('Ndo foi possivel obter as fotos. Tenta mais tarde');

// cédigo posterior omitido

Veja que na funcéo then que realizamos a conversio dos dados para json, no callback de erro, logamos o erro e
langamos um excecdo com nossa mensagem de erro. Quem chamar o método lista, além de passar uma funcio para
obter o resultado da operacdo, passar um callback de erro, terd acesso a mensagem de erro definida pelo servigo. Veja

que em nenhum momento quem usa o método lista precisara logar o erro e definir a mensagem.

Alterando o componente Home :

// alurapic/src/components/home/Home.vue
// cédigo anterior omitido

created() {
this.service = new FotoService(this.$resource);
this.service.lista()

.then(fotos => this.fotos = fotos, err => this.mensagem = err.message);

// cédigo posterior omitido

Muito mais enxuto e o valor de this.mensagem serd err.message , o texto do objeto de Error lancado pelo servigo.

Podemos usar essa estratégia em vdrios lugares da nossa aplicacdo, mas por brevidade vamos aplicar em mais um local
apenas, na exclusdo. Alterando FotoService :
export default class FotoService {
// codigo anterior omitido
apaga(id) {
return this._resource
.delete({ id })

.then(null, err => {

https://cursos.alura.com.br/course/vue-parte2/task/23677

2/3

18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificagdo do usuario | Alura - Cursos online de tecnologia

console.log(err);

throw new Error('Ndo foi possivel remover a foto. Tente mais tarde');

1)

// codigo posterior omitido

Como a operacao de delecido ndo nos devolve nenhum dado, passamos null para then eem seguida passamos o

callback de erro. Nele usamos a mesma estratégia que utilizamos em 1lista .

Por fim, vamos alterar em Home a parte do cddigo que solicita a nossa API a exclusdo de uma foto:

// cédigo anterior omitido

methods: {

remove(foto) {

this.service
.apaga(foto._id)
.then(
() =>{
let indice = this.fotos.indexOf(foto);
this.fotos.splice(indice, 1);
this.mensagem = 'Foto removida com sucesso’

}s

err => this.mensagem = err.message

}s

// cdédigo posterior omitido

Por fim, em nosso FotoService é possivel escrutinarmos a resposta de erro vinda do servidor, por exemplo, para
sabermos o status da requisicdo entre outras coisas que podem ser levadas em consideracdo para lancarmos uma
mensagem de erro mais apropriada com o erro vindo do servidor varia. Para saber as possivel propriedades que o

objeto de resposta de erro contém basta verificar sua saida no console.

https://cursos.alura.com.br/course/vue-parte2/task/23677

3/3

