
18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificação do usuário | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23677 1/3

 06
Tratamento de erros e notificação do usuário

Transcrição

Hoje, quando acessamos nossa aplicação sem que nossa API esteja rodando o que acontece? Vemos uma página com

apenas o menu com conteúdo em branco. Se abrirmos o console do Chrome vemos informações mais detalhadas.

Deixar a página em branco pode suscitar muitas dúvidas no usuário a respeito do que esta acontecendo. É por isso que

precisamos exibir uma mensagem para que ele saiba que não foi possível buscar as imagens e que ele pode tentar mais

tarde.

Aprendemos que toda promise possui no método then dois callbacks, funções que são chamadas em um tempo futuro.

O primeiro é o callback de sucesso e o segundo de fracasso. Sendo assim, podemos alterar o componente Home desta

forma:

// alurapic/src/components/home/Home.vue
// código anterior omitido
 created() {

 this.service = new FotoService(this.$resource);

 this.service.lista()
 .then(
 fotos => this.fotos = fotos,
 err => {
 console.log(err); // logando o erro que veio do server para o desenvolvedor
 this.mensagem = 'Não foi possível obter as fotos. Tenta mais tarde.';

 });
 }

 // código posterior omitido

Se pararmos nosso servidor com a nossa API e recarregarmos nossa aplicação, vemos a mensagem de erro sendo

exibida. Funciona, mas a podemos aplicar uma solução ainda melhor.

Veja que em todos os lugares que o método lista de FotoService for chamado, teremos que logar a mensagem de erro

que veio do servidor, o que é uma boa prática para em seguida de�nir a mensagem que desejamos exibir para o usuário.

Essa mensagem é importante, porque não faz sentido mostrar o erro que veio do servidor para a tela dele, é uma

informação muita técnica que só geraria mais confusão.

Então, podemos isolar o processo de logar a mensagem de erro do servidor e a mensagem de erro de alto nível, isto é,

aquela feita para o usuário no próprio serviço. A vantagem dessa abordagem é que todos os lugares que chamarem o

método lista não precisaram logar o erro e nem de�nir sua própria mensagem de erro.

Alterando FotoService :

// alurapic/src/domain/foto/FotoService.js

export default class FotoService {

18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificação do usuário | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23677 2/3

 // código anterior omitido

 lista() {

 return this._resource
 .query()
 .then(
 res => res.json(),
 err => {
 console.log(err);
 throw new Error('Não foi possível obter as fotos. Tenta mais tarde');
 }
)
 }

 // código posterior omitido
}

Veja que na função then que realizamos a conversão dos dados para json, no callback de erro, logamos o erro e

lançamos um exceção com nossa mensagem de erro. Quem chamar o método lista , além de passar uma função para

obter o resultado da operação, passar um callback de erro, terá acesso a mensagem de erro de�nida pelo serviço. Veja

que em nenhum momento quem usa o método lista precisará logar o erro e de�nir a mensagem.

Alterando o componente Home :

// alurapic/src/components/home/Home.vue
// código anterior omitido

 created() {

 this.service = new FotoService(this.$resource);

 this.service.lista()
 .then(fotos => this.fotos = fotos, err => this.mensagem = err.message);
 }

// código posterior omitido

Muito mais enxuto e o valor de this.mensagem será err.message , o texto do objeto de Error lançado pelo serviço.

Podemos usar essa estratégia em vários lugares da nossa aplicação, mas por brevidade vamos aplicar em mais um local

apenas, na exclusão. Alterando FotoService :

export default class FotoService {

 // código anterior omitido

 apaga(id) {

 return this._resource
 .delete({ id })
 .then(null, err => {

18/04/2020 Vue.js parte 2: Aula 4 - Atividade 6 Tratamento de erros e notificação do usuário | Alura - Cursos online de tecnologia

https://cursos.alura.com.br/course/vue-parte2/task/23677 3/3

 console.log(err);
 throw new Error('Não foi possível remover a foto. Tente mais tarde');
 });
 }

 // código posterior omitido
}

Como a operação de deleção não nos devolve nenhum dado, passamos null para then e em seguida passamos o

callback de erro. Nele usamos a mesma estratégia que utilizamos em lista .

Por �m, vamos alterar em Home a parte do código que solicita a nossa API a exclusão de uma foto:

// código anterior omitido

 methods: {

 remove(foto) {

 this.service
 .apaga(foto._id)
 .then(
 () => {
 let indice = this.fotos.indexOf(foto);
 this.fotos.splice(indice, 1);
 this.mensagem = 'Foto removida com sucesso'
 },
 err => this.mensagem = err.message
)
 }

 },
// código posterior omitido

Por �m, em nosso FotoService é possível escrutinarmos a resposta de erro vinda do servidor, por exemplo, para

sabermos o status da requisição entre outras coisas que podem ser levadas em consideração para lançarmos uma

mensagem de erro mais apropriada com o erro vindo do servidor varia. Para saber as possível propriedades que o

objeto de resposta de erro contém basta veri�car sua saída no console.

