

Tecnologia da Informação

RESUMO

SQL (DML)

SQL (DML)

2

LINGUAGEM SQL E SUBDIVISÕES

SINTAXE BÁSICA DO SELECT

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição;

SELECT * FROM nome_da_tabela WHERE condição;

SELECT coluna1, coluna2, ... FROM nome_da_tabela;

SELECT DISTINCT coluna1, coluna2, ... FROM nome_da_tabela WHERE
condição;

CONDIÇÕES NA CLÁUSULA WHERE

SELECT * FROM Clientes WHERE Pais=’Mexico’;

SQL

DML

Manipulaçã
o de dados

SELECT

INSERT

UPDATE

DELETE

DQL

Somente o
SELECT

DDL

Definir
tabelas e

elementos
associados

CREATE

ALTER

DROP

TRUNCATE

VDL

Específica
para visões

SDL

Específica
para

armazenamen
to

DCL

Controlar o
acesso aos

dados

GRANT

REVOKE

DTL

Tratar as
transações

START
TRANSACTION

ou BEGIN

COMMIT

ROLLBACK

C
on
di
çõ
es

= igual

< menor

<= menor ou igual

> maior

>= maior ou igual

<> diferente

BETWEEN registros em um intervalo

LIKE procurar padrão

IN possíveis valores

IS NULL é nulo

SQL (DML)

3

BETWEEN, IN, LIKE, IS NULL E IS NOT NULL

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna
BETWEEN valor1 AND valor2;

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IN
(valor1, valor2, ...);

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna
LIKE padrão;

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IS
NULL;

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE coluna IS
NOT NULL;

PADRÃO NO LIKE

Operador
LIKE

Procurar padrão em uma coluna

% Substitui um número qualquer de 0 ou mais caracteres.

_ Substitui um único caractere.

LIKE ‘A%’ Qualquer string que inicie com A.

LIKE ‘%A’ Qualquer string que termine com A.

LIKE ‘A_’ String de dois caracteres que tenha a primeira letra A e o
segundo caractere seja qualquer outro.

COMPARAÇÃO COM NULL

A comparação com NULL não deve ser feita com os operadores lógicos = ou
<>, mas sim com IS NULL e IS NOT NULL. Ao comparar qualquer coisa
com NULL usando os operadores lógicos comuns, será retornado um
resultado desconhecido na comparação (UNKNOWN) e, por isso, não serão
retornadas linhas.

MAIS DE UMA CONDIÇÃO E NEGAÇÃO

AND

•Registros em que todas as condições são verdadeiras.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 AND
condição2 AND condição3 ...;

OR

•Registros em que pelo menos uma das condições é verdadeira.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição1 OR
condição2 OR condição3 ...;

NOT

•Registros que não satisfazem uma condição.

• SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE NOT condição;

SQL (DML)

4

ALIAS OU APELIDO

Sobre os alias:

§ São usados para fornecer um nome temporário a uma tabela ou coluna
em uma tabela.

§ Costumam ser usados para tornar os nomes das colunas mais legíveis.

§ Existe apenas para a duração da consulta.

SELECT coluna1 AS nova, coluna2 FROM nome_da_tabela WHERE
condição;

OU

SELECT coluna1 nova, coluna2 FROM nome_da_tabela WHERE
condição;

SELECT coluna1, coluna2... FROM nome_da_tabela AS nova WHERE
condição;

OU

SELECT coluna1, coluna2... FROM nome_da_tabela nova WHERE
condição;

ORDENAÇÃO COM ORDER BY

A linguagem SQL permite que o usuário ordene as tuplas no resultado de
uma consulta pelos valores de um ou mais atributos que aparecem, usando a
cláusula ORDER BY.

A ordem padrão está em ordem crescente de valores. A palavra-chave DESC
pode ser usada para ordenar os resultados em ordem decrescente de valores.
A palavra-chave ASC pode ser usada para especificar a ordem crescente
explicitamente.

A sintaxe básica para esse comando é:

SELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição
ORDER BY coluna ASC;

ELECT coluna1, coluna2, ... FROM nome_da_tabela WHERE condição
ORDER BY coluna DESC;

Uma sintaxe possível para a cláusula ORDER BY é a que indica o número da
coluna ao invés de seu nome. O número indica qual coluna da cláusula
SELECT será usada para a ordenação. Assim, se for 1, será usada a primeira
coluna, se for 2, a segunda, e, assim, sucessivamente.

SELECT cpf, nome FROM funcionario WHERE salario > 1000 ORDER
BY 1 ASC;

(ORDENAÇÃO PELO CPF)

SQL (DML)

5

FUNÇÃO DE AGREGAÇÃO

As funções de agregação são usadas para resumir informações de várias
tuplas em uma síntese de tupla única. Existem diversas funções de
agregação embutidas no SQL: COUNT, SUM, MAX, MIN e AVG.

A sintaxe básica para essas funções é:

SELECT FUNCAO(coluna1) FROM nome_da_tabela WHERE condição;
em que FUNCAO é qualquer uma das funções de agregação.

O quadro a seguir apresenta as definições dessas funções:

FUNÇÃO RETORNO

MIN Menor valor de uma coluna.

MAX Maior valor de uma coluna.

COUNT Número de linhas que atendem a um critério.

AVG Média dos valores de uma coluna numérica.

SUM Soma dos valores de uma coluna numérica.

A cláusula COUNT pode ser usada com o nome da coluna, * ou com 1:

§ COUNT(nome_da_coluna): retorna o número de linhas excluindo-
se da contagem as linhas que possuem nulo para a coluna desejada.

§ COUNT(*) ou COUNT(1): retorna o número total de linhas,
independentemente de valores nulos registrados para qualquer
campo.

A cláusula SUM pode ser usada com o nome da coluna ou com um número
indicativo da quantidade a ser somada:

§ SUM(nome_da_coluna): retorna o somatório dos valores presentes
em nome_da_coluna.

§ SUM(1): retorna um somatório, sendo somado 1 para cada registro
encontrado. Resultado similar a COUNT(*) ou COUNT(1).

§ SUM(2): retorna um somatório, sendo somado 2 para cada registro
encontrado.

§ SUM(N): retorna um somatório, sendo somado N para cada registro
encontrado.

AGRUPAMENTOS

A linguagem SQL tem uma cláusula GROUP BY para aplicar
agrupamentos.

SELECT colunas FROM nome_da_tabela WHERE condição GROUP BY
coluna;

A cláusula HAVING pode ser usada para definir uma condição para um
agrupamento com GROUP BY.

SELECT colunas FROM nome_da_tabela WHERE condição GROUP BY
coluna HAVING condição;

SQL (DML)

6

PRODUTO CARTESIANO

O Produto Cartesiano seleciona todos os pares de linhas das duas
relações de entrada (independentemente de ter ou não os mesmos valores
em atributos comuns). A nova relação possui todos os atributos que compõem
cada uma das relações que fazem parte da operação.

Em SQL, o produto cartesiano é indicado com o uso de vírgulas entre as
tabelas desejadas.

SELECT tabela1.coluna1, tabela2.coluna2., ... FROM tabela1, tabela2
WHERE condição;

A quantidade de linhas do resultado do produto cartesiano é dada pela
multiplicação da quantidade de linhas das tabelas de entrada. Logo, se A
possui 10 linhas e B possui 100 linhas, então SELECT * FROM A, B irá
possuir 1000 linhas.

Porém, tome muito cuidado, pois pode haver alguma outra condição após o
WHERE ou mesmo nas tabelas de entrada que altere essa quantidade de
linhas do resultado.

JUNÇÕES (JOINS)

SELECT colunas FROM tabela1 JOIN tabela2 ON tabela1.coluna =
tabela2.coluna;

SELECT colunas FROM tabela1 INNER JOIN tabela2 USING (coluna);

INNER JOIN (ou simplemente JOIN)
• Retorna somente os registros que possuem valores relacionados em ambas as tabelas, isto é, as

intersecções.

LEFT JOIN (ou LEFT OUTER JOIN)
• Retorna todos os registros da tabela da esquerda, e os registros relacionados da tabela da direita.
• Preenche campos não relacionados na tabela da direita com NULL.

RIGHT JOIN (ou RIGHT OUTER JOIN)
• Retorna todos os registros da tabela da direita, e os registros relacionados da tabela da esquerda.
• Preenche campos não relacionados na tabela da esquerda com NULL

FULL OUTER JOIN
• Retorna todos os registros, independente de relação.
• Preenche campos não relacionados em qualquer das tabelas com NULL.

CROSS JOIN
• Retorna todos os registros da primeira relacionados com todos os registros da segunda.
• É o produto cartesiano.

SELF JOIN
• União de uma tabela com ela mesma.

SQL (DML)

7

OPERADORES DE CONJUNTOS

OPERADOR RETORNO

UNION Todas as linhas pertencentes as consultas envolvidas, sem as
repetições.

UNION ALL Todas as linhas pertencentes as consultas envolvidas, incluindo
as repetições.

INTERSECT Linhas que estão tanto na primeira quanto na segunda consulta.
Intersecção, sem repetições.

EXCEPT Linhas que estão na primeira, mas não estão na segunda, sem
repetições.

SELECT colunas FROM tabela1

UNION OU UNION ALL OU INTERSECT OU EXCEPT

SELECT colunas FROM tabela2;

CONSULTA ANINHADA

Uma subconsulta, consulta interna ou seleção interna é uma consulta que está
aninhada dentro de uma instrução SELECT, INSERT, UPDATE ou
DELETE ou em outra subconsulta.

As subconsultas podem ser comparadas com a consulta externa com o uso
de operadores IN (ou NOT IN), ANY, ALL e EXISTS (ou NOT EXISTS),
além dos operadores básicos =, <, <=, >, >=, <>.

ALL E ANY

Os operadores ANY e ALL permitem realizar uma comparação entre o
valor de uma única coluna e um conjunto de outros valores.

• ANY: TRUE se QUALQUER um dos valores da subconsulta
atender a condição.

SELECT colunas FROM tabela WHERE coluna operador ANY
(subconsulta);

• ALL: TRUE se TODOS os valores da subconsulta atenderem a
condição.

SELECT colunas FROM tabela WHERE coluna operador ALL
(subconsulta);

EXISTS E NOT EXISTS

A cláusula EXISTS faz uma verificação se existe algum resultado para a
subconsulta informada. Caso haja, o resultado da consulta principal é
exibido. É muito comum sua utilização quando se deseja trazer resultados
onde um valor específico existe dentro de outra tabela. A sintaxe básica é:

SELECT colunas FROM tabela WHERE EXISTS (SELECT colunas FROM
tabela WHERE condicão);

Da mesma forma, também há a cláusula NOT EXISTS, somente retorna o
resultado da consulta principal, se não houver nenhum resultado para a
subconsulta.

SQL (DML)

8

CLÁUSULAS ESPECIAIS

OPERADOR RETORNO

CASE Percorre condições e retorna um valor para a 1ª condição
atendida.

TOP, LIMIT
ou FETCH

FIRST

Especifica o número de registros a serem retornados.

OFFSET Pula um número de registros antes de começar a exibir.

SELECT
INTO

Copia dados de uma tabela para uma nova tabela

INSTRUÇÃO DELETE

A instrução básica para deletar registros existentes de uma tabela é a
instrução DELETE.

DELETE FROM nome_da_tabela WHERE condição;

INSTRUÇÃO UPDATE

A instrução básica para atualizar os registros de uma tabela é a instrução
UPDATE.

UPDATE nome_da_tabela SET coluna1 = valor1, coluna2 = valor2 ...
WHERE condição;

INSTRUÇÃO INSERT INTO

A instrução básica para inserir novos registros em uma tabela é a instrução
INSERT INTO.

INSERT INTO nome_da_tabela (coluna1, coluna2, coluna3, ...) VALUES
(valor1, valor2, valor3, ...);

INSERT INTO nome_da_tabela VALUES (valor1, valor2, valor3, ...);

