(S}

INTRODUCAO AO GRAPHQL

O QUE E O GRAPHAQL?

E uma linguagem de consulta a dados em API's desenvolvida pelo
Facebook. As consultas sdo interpretadas em tempo de execucao no
servidor usando um sistema de tipos que vocé define para seus dados.

Com 1sso facilita o processo de entregar a aplicacao Client apenas o que fol
requisitado pela mesma.

Nao esta vinculado a qualquer banco de dados ou sistema armazenamento
especifico.

CONCEITOS BASICOS

Type system: sistema de tipos que usamos para descrever nossos dados
Queries: obtém dados da nossa API (read)
Mutations: faz alteracoes nos dados da nossa API (write)

Schema: define o "Esquema’ da nossa API, pense nele com um container
para todos os tipos da nossa API (SDL: Schema Definition Language)

(9

TYPE SYSTEM

GraphQL tem seu proprio sistema de tipos para que possamos "descrever"
dados para nossa API.
Exemplo de uma API para um Blog:

type User { type Post { type Comment {
name: String! title: String! comment: String!
email: String! content: String! user: User!
photo: String photo: String! post: Post!

} author: User! }

comments: [Comment!]!

J

* 0 sinal de exclamacao (!) indica que o campo € obrigatdrio, ou seja ndo pode receber nem retornar valores

nulos

(9
@ QUERIES

Queries sao 0 que usamos para buscar dados na nossa API.
(analogia método GET do REST)
Obs: campos resolvidos paralelamente

Definicao da Query Requisicao no Client JSON retornado
type Query { { {
users: [User!]! query { "data": {
} users { "users": [
name {
email ‘name"; "Jon",

} "email"; "jon@email.com"

} L

Mutations nos permitem criar, alterar e deletar dados
(analogia ao POST, PUT e DELETE do REST)
Obs: campos resolvidos em série (um apos o outro)

Definicao da Mutation Requisicao no Client
type Mutation { {

createUser(name: String!, email: String!): User! mutation {
} createUser (

name: "Dany’,

email: "dany@email.com"

)
name
}
}
}

JSON retornado

{
"data": {
"createUser": {
"name": "Dany"
}
}
}

(9

SCHEMA

O Schema enbloga nossas Queries, Mutations, Subscriptions, Directives, etc

Definicao do Schema
type Query { type Mutation { type Subscription {
user(id: ID!): User createUser(user: UserSubscriptionPayload
name: String!, }
] email: String!

password: String!
): User!

(S}

EXECUCAO

(9

RESOLVERS

Cada campo no GraphQL possui uma fungao "Resolver”

Query para buscar pelo id Resolver assincrono para query "user"
type Query { Query {
user(id: ID!): User user (parent, args, context, info) {
} return context.db.UserModel
findBylId(args.id)

J
}

* retorna uma Promise com um objeto do tipo User

(9

TRIVIAL RESOLVERS

Agora que temos o objeto User disponivel, precisamos resolver seus campos
tambéem. Isso e feito por meio de um Resolver Trivial, que € o Resolver mais
simples que podemos ter no GraphQL:

User Resolvers triviais dos campos do objeto "User"
type User { User {

name: String! name (parent, args, context, info) {

email: String! return parent.name;

photo: String 1,
} email (parent, args, context, info) {

return parent.email;
},
photo (parent, args, context, info) {
return parent.photo;
}
}

SCALAR TYPES

Um objeto GraphQL possul um nome e seus campos, mas em algum
momento esses campos precisam ser resolvidos com valores concretos.
E al que entram os "Tipos Escalares": eles representam as folhas da arvore.

Int: um inteiro de 32 bits (assinado) Boolean:true ou false

Float: um ponto flutuante de dupla ID: Representa um identificador

precisao (assinado) unico, geralmente usado para
rebuscar um objeto ou como chave

String: uma sequéncia de carateres de cache.

UTF-8

(9

@ GRAPHQL E UMA ARVORE

/ : a
A forma como 0s campos sao \
resolvidos no GraphQL, € bem

semalhante a estrutura de dados do

tipo arvore: . .
type Post { . . .
title: String! AN
content: String! 0.N
photo: String! N
author: User! . .
comments: [Comment! ! .
} jeetatel
‘ .

(9

COMO FUNCIONA?

query {
user(id: 53) { S .
e Requisicao via Query
posts {
App Client : title / GraphQL Database
followers(last: 2) {
name
}
}
}
>
[HTTP POST oS
< {
"data": {
"user": {
"mame"; "Jon'",
"posts": [
{ "title": "Learn GraphQL" }
I,
"followers": [
{"name": "Dany" },
{"name": "Davos" }
] Resposta JSON

}

ONDE APRENDER MAIS?

Documentacao / Referéncias:

Documentacao Oficial: http://graphql.org

Referéncia: https://howtographqgl.com

